
Brief Announcement: A Nonblocking Set Optimized for
Querying the Minimum Value

Yujie Liu and Michael Spear
Department of Computer Science and Engineering, Lehigh University

yul510@cse.lehigh.edu, spear@cse.lehigh.edu

Categories and Subject Descriptors

D.1.3 [Parallel Techniques]: Concurrent Programming—
Parallel Programming

General Terms

algorithms, experimentation, measurement, performance

Keywords

shared memory, lock-free data structures, linearizability

1. INTRODUCTION
Shared memory run-time systems, such as garbage col-

lectors (GC) and transactional memory (TM) [2], often re-
quire global coordination. To keep costs low, designers of
these systems identify a tradeoff that can prevent bottle-
necks without affecting the common case, usually by opti-
mizing the run time of one operation at the expense of other
operations. The following variant is particularly interesting:

• There exists some set of states S, and a total order <t

on the elements in S.
• There is a set of threads, T , and every thread tk ∈ T

is always in exactly one state.
• |S| is significantly larger than |T |, and multiple threads

can be in the same state.
• The operation to optimize is a query that returns the

minimum over all threads’ states.
Among other examples, this characterization applies to re-
cent problems encountered by Marathe et al. [5] and Kosk-
inen et al. [4], where S is the set of possible start times for
transactions in a TM system.

Our solution is inspired by the SNZI shared object [1].
The SNZI is a counter-like object, where queries indicate
whether the value of the counter is zero or nonzero, but
not the precise value of a nonzero counter. One of the in-
novations in SNZI is to represent the counter as a tree: an
increment (or Arrive) operation can be initiated at any node
in the tree, with a matching decrement (Depart) by the same
thread initiating at the same node. In the common case, op-
erations on a SNZI only interact with a thread-local subset
of the nodes of the tree. This keeps costs low by limiting
sharing of nodes among caches.

Though an unconventional characterization, we can think
of the SNZI as tracking the minimum member in the set

Copyright is held by the author/owner(s).
PODC’11, June 6–8, 2011, San Jose, California, USA.
ACM 978-1-4503-0719-2/11/06.

S = {0, 1} where 1 <t 0. In this setting, the logical act of
incrementing the counter is equivalent to moving a thread to
state 1, decrementing the counter is equivalent to moving a
thread to state 0, and a SNZI query returns 1 if there exists
any thread in state 1. This paper introduces the Mindicator,
a tree-based datastructure optimized for the more general
case where |S| is large (i.e., |S| ≈ 232 − 1). A Mindica-
tor takes O(lg(T)) time to register and deregister a thread’s
state, and O(1) time to query the minimum over all thread
states. The Mindicator is scalable and admits lock-free vari-
ants that are either linearizable [3] or quiesciently consistent.

2. ALGORITHM
Our lock-free Mindicator implementation is organized as

a tree. In this tree, each thread is assigned a unique leaf
node, and begins its Arrive() and Depart() operations at
that node. Arrive() and Depart() operations propagate
upward, transmitting values from children to their parents,
until they reach a “turning point”, after which the opera-
tions traverse downward to the leaf at which they originated.
Query() operations access only the root node. Each leaf is
read by several threads, but only modified by one thread.
Mindicator nodes can have any number of children.

Figure 1 presents the lock-free Mindicator algorithm; ∞ =
int max is the default state, which is largest according to the
<t relation. Depart() operations always reset a thread state
to this value. The childrenof operator returns an empty set
when applied to leaf nodes, and when X is the root node, a
method invoked on parentof(X) will return immediately. In
this simple variant, the set stored in the Mindicator can be
found by reading the values of all leaf nodes. Intermediate
nodes store the minimum values of their respective subtrees.
The root stores the minimum value of the entire set.

The Mindicator tree is composed of Node objects, where
each node contains a collection of child pointers, a parent
pointer, and a 64-bit CAS object. The CAS object stores a
tuple, consisting of an integer summary value (min), a state
bit (sta), and a version number (ver). The min field summa-
rizes the smallest summary value of all children of a Node.
The sta bit indicates if that value is being propagated up-
ward (in which case it is “tentative”, not yet “steady”). The
ver counter increments by one on every update to the Node,
in order to prevent ABA problems and simplify the task of
atomically summarizing the values of a node’s children. All
node objects are initialized to a steady value of ∞.

A Query() on a Node returns the min value of the node.
Queries performed on the root of a Mindicator tree return
the smallest value held in the Mindicator.

datatype NODE

sta : B ⊲ state bit
min : N ⊲ minimum of children
ver : N ⊲ version number

initially NODE (sta, min, ver) = (steady,∞, 0)

procedure Arrive(X : NODE, n : N)

1: while true do
2: x← Read(X)
3: if x.min > n or x.sta = tentative
4: break
5: if CAS(X, x, (steady, x.min, x.ver + 1))
6: return
7: while true do
8: x← Read(X)
9: if x.min ≤ n
10: break
11: if CAS(X, x, (tentative, n, x.ver + 1))
12: x← (tentative, n, x.ver + 1)
13: break
14: if x.sta = tentative
15: Arrive(parentof(X), n)
16: if x.min = n
17: CAS(X, x, (steady, n, x.ver + 1))

procedure Depart(X : NODE, n : N)

18: Revisit(X)
19: x← Read(X)
20: if x.min < n and x.sta = steady
21: return
22: Depart(parentof(X), n)

procedure Revisit(X : NODE)

23: while true do
24: x← Read(X)
25: min←∞
26: if x.sta = tentative
27: return
28: for C in childrenof(X) do
29: c← Read(C)
30: if c.min < min
31: min← c.min
32: if min < x.min
33: if CAS(X, x, (tentative, min, x.ver + 1))
34: return
35: elif CAS(X, x, (steady, min, x.ver + 1))
36: return

function Query(X : NODE) : N

37: return Read(X).min

Figure 1: The Lock-Free Mindicator Algorithm: Ar-

rive() and Depart() should be initiated on leaves,

while Query() should be executed on the root node.

Arrive() inserts a value into the set. It recursively climbs
upward, starting at a leaf and ending at some“turning point.”
Then it regresses downward to the leaf at which it began.
When climbing, the thread writes its value at nodes to lower
their summary value, and marks those values as tentative.
The turning point occurs either when the root is accessed, or
when Arrive() reaches a node whose value is steady and ≤
the arriver’s value. The thread then regresses, un-marking
the tentative bits it marked in its climbing phase.

A Depart() begins at a leaf. It sets the leaf’s min to
the maximum value (e.g., ∞), and recurses upward. At
each level, Depart() uses Revisit() to update a node by
reading all of the node’s children, and then setting the node’s
value to the minimum value of all children. As the operation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 8 16 24 32 40 48 56 64

T
h
ro

u
g
h
p
u
t
(1

0
0
0
 V

is
it
/s

e
c
)

Threads

Linearizable
Quiescent
LinkedList

Figure 2: Preliminary Mindicator Performance.

already removed its own value from one of the children, this
action serves to remove any copies of the departer’s value
from nodes in higher levels of the tree, but only when no peer
also stores that value. A Depart() of value v propagates
the removal of v until it reaches either the root, or some
intermediate node that holds a steady value v′ ≤ v.

3. EVALUATION AND CONCLUSIONS
We have implemented Mindicators that are lock-based,

quiesciently consistent (QC), and lock-free (described above).
We have also devised implementations that do not require
Arrive() to begin at a leaf, and dynamically-resizing Mindi-
cators. A proof of correctness is underway, and we have
stress-tested our implementations extensively.

Figure 2 presents performance on a 64-thread Sun Nia-
gara2 CPU. To maximize costs, all threads repeatedly Ar-

rive() and Depart() from the Mindicator, with no Queries.
Arrive() uses a random 10-bit value, instead of the mono-
tonically increasing values expected in TM and GC work-
loads. Throughput is the average of five 5-second trials. We
compare a locked doubly-linked list, a lock-free linearizable
Mindicator, and a QC Mindicator. For all but the smallest
thread counts, Mindicators outperform the list, and the QC
algorithm, which is suitable for our target TM workloads,
scales very well. We anticipate broad applicability of Mindi-
cators to shared memory runtime systems, middleware, and
operating systems.

4. REFERENCES
[1] F. Ellen, Y. Lev, V. Luchangco, and M. Moir. SNZI:

Scalable NonZero Indicators. In Proceedings of the
Twenty-Sixth ACM Symposium on Principles of Distributed
Computing, Portland, OR, Aug. 2007.

[2] M. P. Herlihy and J. E. B. Moss. Transactional Memory:
Architectural Support for Lock-Free Data Structures. In
Proceedings of the 20th International Symposium on
Computer Architecture, San Diego, CA, May 1993.

[3] M. P. Herlihy and J. M. Wing. Linearizability: a Correctness
Condition for Concurrent Objects. ACM Transactions on
Programming Languages and Systems, 12(3):463–492, 1990.

[4] E. Koskinen and M. Herlihy. Concurrent Non-commutative
Boosted Transactions. In Proceedings of the 4th ACM
SIGPLAN Workshop on Transactional Computing, Raleigh,
NC, Feb. 2009.

[5] V. J. Marathe, M. F. Spear, and M. L. Scott. Scalable
Techniques for Transparent Privatization in Software
Transactional Memory. In Proceedings of the 37th
International Conference on Parallel Processing, Portland,
OR, Sept. 2008.

