
Mounds: Array-Based Concurrent Priority Queues

Yujie Liu and Michael Spear

Department of Computer Science and Engineering

Lehigh University

{yul510, spear}@cse.lehigh.edu

Abstract—This paper introduces a concurrent data
structure called the mound. The mound is a rooted tree
of sorted lists that relies on randomization for balance. It
supports O(log(log(N))) insert and O(log(N)) extractMin
operations, making it suitable for use as a priority queue.
We present two mound algorithms: the first achieves lock
freedom via the use of a pure-software double-compare-
and-swap (DCAS), and the second uses fine grained locks.
Mounds perform well in practice, and support novel oper-
ations that we expect to be useful in parallel applications,
such as extractMany and probabilistic extractMin.

Keywords-Lock-Freedom; Linearizability; Randomiza-
tion; Heap; Priority Queue; Synchronization

I. INTRODUCTION

Priority queues are useful in scheduling, discrete

event simulation, networking (e.g., routing and real-

time bandwidth management), graph algorithms (e.g.,

Dijkstra’s algorithm), and artificial intelligence (e.g., A∗

search). In these and other applications, not only is it

crucial for priority queues to have low latency, but they

must also offer good scalability and guarantee progress.

Furthermore, the insert and extractMin opera-

tions are expected to have no worse than O(log(N))
complexity, and thus most priority queue implementa-

tions are based on heaps [1, Ch. 6] or skip lists [2].

Concurent data structures are commonly evaluated in

three categories: progress, correctness, and scalability.

Progress refers to the ability of one thread to complete

an operation when another thread is in the middle of

its operation. A practical progress guarantee is lock

freedom, which ensures that once a thread begins an

operation on a shared data structure, some thread com-

pletes its operation in a bounded number of instructions.

While individual operations may starve, a lock-free data

structure is immune to priority inversion, deadlock, live-

lock, and convoying. Lock-freedom has been achieved

in many high-performance data structures [3], [4].

The most intuitive and useful correctness criteria for

concurrent data structures is linearizability [5], which

requires that an operation appears to happen at a single

instant between its invocation and response. The weaker

property of quiescent consistency [6, Ch. 3] still requires

each operation to appear to happen at a single instant,

but only insists that an operation appear to happen

between its invocation and response in the absence of

concurrency.

Lastly, the most scalable data structures typically

exhibit disjoint-access parallelism [7]. That is, their

operations do not have overlapping memory accesses

unless such accesses are unavoidable. This property

captures the intuition that unnecessary sharing, espe-

cially write sharing, can result in scalability bottlenecks.

In practice, many algorithms with artificial bottlenecks

scale well up to some number of hardware threads.

However, algorithms that are not disjoint-access parallel

tend to exhibit surprisingly bad behavior when run on

unexpected architectures, such as those with multiple

chips or a large number of threads.

To date, efforts to create a priority queue that is

lock-free, linearizable, and disjoint-access parallel have

met with limited success. The Hunt heap [8] used fine-

grained locking, and avoided deadlock by repeatedly

un-locking and re-locking in insert to guarantee a

global locking order. Dragicevic and Bauer presented a

linearizable heap-based priority queue that used lock-

free software transactional memory (STM) [9]. Their

algorithm improved performance by splitting critical

sections into small atomic regions, but the overhead of

STM resulted in unacceptable performance. A quies-

cently consistent, skiplist-based priority queue was first

proposed by Lotan and Shavit [10] using fine-grained

locking, and was later made non-blocking [4]. Another

skiplist-based priority queue was proposed by Sundell

and Tsigas [11]. While this implementation was lock-

free and linearizabile, it required reference counting,

which compromises disjoint-access parallelism.

This paper introduces the “mound”, a tree of sorted

lists that can be used to construct linearizable, disjoint

access parallel priority queues that are either lock-free

or lock-based. Like skiplists, mounds achieve balance,

and hence asymptotic guarantees, using randomization.

However, the structure of the mound tree resembles a

heap. The benefits of mounds stem from the following

novel aspects of their design and implementation:



• While mound operations resemble heap operations,

mounds employ randomization when choosing a

starting leaf for an insert. This avoids the need

for insertions to contend for a mound-wide counter,

but introduces the possibility that a mound will

have “empty” nodes in non-leaf positions.

• The use of sorted lists avoids the need to swap a

leaf into the root position during extractMin.

Combined with the use of randomization, this im-

proves disjoint-access parallelism. Asymptotically,

extractMin is O(log(N)), with roughly the

same overheads as the Hunt heap.

• The sorted list also obviates the use of swapping

to propagate a new value to its final destination in

the mound insert operation. Instead, insert

uses a binary search along a path in the tree to

identify an insertion point, and then uses a single

writing operation to insert a value. The insert

complexity is O(log(log(N))).
• The mound structure enables several novel uses,

such as the extraction of multiple high-priority

items in a single operation, and extraction of el-

ements that “probably” have high priority.

In Section II, we present an overview of the mound

algorithm. Section III discusses the details of the lock-

free algorithm. Section IV presents a fine-grained lock-

ing mound. Section V briefly discusses novel uses of

the mound that reach beyond traditional priority queues.

We evaluate our mound implementations on the x86

and SPARC architectures in Section VI, and present

conclusions in Section VII.

II. MOUND ALGORITHM OVERVIEW

A mound is a rooted tree of sorted lists. For simplicity

of presentation, we consider an array-based implemen-

tation of a complete binary tree, and assume that the

array is always large enough to hold all elements stored

in the mound. The array structure allows us to locate a

leaf in O(1) time, and also to locate any ancestor of any

node in O(1) time. Other implementation alternatives

are discussed in Section VI.

We focus on the operations needed to implement

a lock-free priority queue with a mound, namely

extractMin and insert. We permit the mound

to store arbitrary non-unique, totally-ordered values of

type T, and ⊤ is the maximum value. We reserve ⊤
as the return value of an extractMin on an empty

mound, to prevent the operation from blocking.

Listing 1 presents the basic data types for the mound.

We define a mound as an array-based binary tree of

MNodes (tree) and a depth field. The MNode type

describes nodes that comprise the mound’s tree. Each

Listing 1 Simple data types and methods used by a

mound of elements of type “T”
type LNode

T value ⊲ value stored in this list node

LNode∗ next ⊲ next element in list

type MNode
LNode∗ list ⊲ sorted list of values stored at this node

boolean dirty ⊲ true if mound property does not hold

integer c ⊲ counter – incremented on every update

global variables
treei∈[1,N] ← 〈nil, false, 0〉 : MNode ⊲ array of mound nodes

depth← 1 : integer ⊲ depth of the mound tree

node consists of a pointer to a list, a boolean field, and

a sequence number (unused in the locking algorithm).

The list holds values of type T, in sorted order. We

define the value of a MNode based on whether its list

is nil or not. If the MNode’s list is nil, then its value is

⊤. Otherwise, the MNode’s value is the value stored in

the first element of the list, i.e., list.value. The val()
function in is shorthand for this computation.

In a traditional min-heap, the heap invariant only

holds at the boundaries of functions, and is stated in

terms of the following relationship between the values

of parent and child nodes:

∀p, c ∈ [1, N ] : (⌊c/2⌋ = p)⇒ val(treep) ≤ val(treec)

Put another way, a child’s value is no less than the

value of its parent. This property is also the correctness

property for a mound when there are no in-progress

operations. When an operation is between its invocation

and response, we employ the dirty field to express a

more localized mound property:

∀p, c ∈ [1, N ] : (⌊c/2⌋ = p) ∧ (¬treep.dirty)

⇒ val(treep) ≤ val(treec)

In other words, when dirty is not set, a node’s value

is less than the value of either of its children.

A mound is initialized by setting every element in the

tree to 〈nil, false, 0〉. This indicates that every node has

an empty list, and hence a logical val() of ⊤. Since

all nodes have the same val(), the dirty fields can

initially be marked false, as the mound property clearly

holds for every parent-child pair.

A. The Insert Operation

The insert operation is depicted in Figure 1.

When inserting a value v into the mound, the only

requirement is that there exist some node index c
such that val(treec) ≥ v and if c 6= 1 (c is not

the root index), then for the parent index p of c,
val(treep) ≤ v. When such a node is identified, v can

be inserted as the new head of treec.list. Inserting v as



2 9 11 19

4 16 217 15

...

4 16 21

9 11 197 15

Step 1: Remove Head &

Mark Next Dirty

Step 3:

Swap Lists
Step 2:

Find Min

Repeat Steps 2 and 3

as Needed

... ... ...

... ... ... ...

2 9 11 19 33

4 16 21

15 49

65

33 51

68

74

89

48

89

...

83

Step 1:

Select Leaf

Step 2:

Binary Search

18

Insert ExtractMin

Step 3:

DCAS

Step 3:

Insert at Child

Figure 1: Steps of Insert and ExtractMin Operations

the head of treec.list clearly cannot violate the mound

property: decreasing val(treec) to v does not violate

the mound property between treep and treec, since

v ≥ val(treep). Furthermore, for every child index c′

of c, it already holds that val(treec′) ≥ val(treec).
Since v ≤ val(treec), setting val(treec) to v does

not violate the mound property between treec and its

children.

The insert(v) method operates as follows: it

selects a random leaf index l and compares v to

val(treel). If v ≤ val(treel), then either the parent

of treel has a val() less than v, in which case the

insertion can occur at treel, or else there must exist

some node index c in the set of ancestor indices

{⌊l/2⌋, ⌊l/4⌋, . . . , 1}, such that inserting v at treec pre-

serves the mound property. A binary search is employed

to find this index. Note that the binary search is along

an ancestor chain of logarithmic length, and thus the

search introduces O(log(log(N)) overhead.

The leaf is ignored if val(treel) < v, since the

mound property guarantees that every ancestor of treel
must have a val() < v, and another leaf is randomly

selected. If too many unsuitable leaves are selected

(indicated by a tunable THRESHOLD parameter), the

mound is expanded by one level.

Note that insert is bottleneck-free. Selecting a

random leaf avoids the need to maintain a pointer to the

next free leaf, which would then need to be updated by

every insert and extractMin. Furthermore, since

each node stores a list, we do not need to modify a

leaf and then swap its value upward, as in heaps. The

number of writes in the operation is O(1).

B. The ExtractMin Operation

extractMin is depicted in Figure 1, and resembles

its analog in traditional heaps. When the minimum value

is extracted from the root, the root’s val() changes to

equal the next value in its list, or ⊤ if the list becomes

empty. This behavior is equivalent to the traditional heap

behavior of moving some leaf node’s value into the root.

At this point, the mound property may not be preserved

between the root and its children, so the root’s dirty
field is set true.

To restore the mound property at N , a helper function

(moundify) is used. It analyzes the triangle consisting

of a dirty node and its two children. If either child is

dirty, it first calls moundify on the child, then restarts.

When neither child is dirty, moundify inspects the

val()s of treen and its children, and determines which

is smallest. If treen has the smallest value, or if it

is a leaf with no children, then the mound property

already holds, and the treen.dirty field is set to false.

Otherwise, swapping treen with the child having the

smallest val() is guaranteed to restore the mound

property at treen, since val(treen) becomes ≤ the

val() of either of its children. However, the child

involved in the swap now may not satisfy the mound

property with its children, and thus its dirty field is

set true. In this case, moundify is called recursively

on the child. Just as in a traditional heap, O(log(N))
calls suffice to “push” the violation downward until the

mound property is restored.

III. THE LOCK-FREE MOUND

An appealing property of mounds is their amenity to

a lock-free implementation. In this section, we present a

lock-free, linearizable mound that can be implemented

on modern x86 and SPARC CPUs. Pseudocode for the

lock-free algorithm appears in Listing 2.

A. Preliminaries

As is common when building lock-free algorithms,

we require that every shared memory location be

read via an atomic READ instruction. We perform up-

dates to shared memory locations using compare-and-

swap (CAS), double-compare-and-swap (DCAS), and

optionally double-compare-single-swap (DCSS) oper-

ations. We assume that these operations atomically

read/modify/write one or two locations, and that they

return a boolean indicating if they succeeded. These

instructions can be simulated with modest overhead on

modern hardware using known techniques [12].

To avoid the ABA problem, every mutable shared

location (e.g., each MNode) is augmented with a

counter (c). The counter is incremented on every



Listing 2 The Lock-free Mound Algorithm

func val(N : MNode) : T

L1: if N.list = nil return ⊤
L2: else return nonFaultingLoad(N.list.value)

func randLeaf(d : integer) : integer

L3: return random i ∈ [2d−1, 2d − 1]

proc insert(v : T)

L4: while true

L5: c← findInsertPoint(v)
L6: C ← READ(treec)
L7: if val(C) ≥ v
L8: C′ ← 〈new LNode(v, C.list), C.dirty, C.c + 1〉
L9: if c = 1
L10: if CAS(treec, C, C′) return

L11: else

L12: P ← READ(treec/2)
L13: if val(P ) ≤ v
L14: if DCSS(treec, C, C′, treec/2, P ) return

L15: delete(C′.list)

func findInsertPoint(v : T) : integer

L16: while true

L17: d← READ(depth)
L18: for attempts← 1 . . . THRESHOLD

L19: leaf ← randLeaf(d)
L20: if val(leaf) ≥ v return binarySearch(leaf, 1, v)
L21: CAS(depth, d, d + 1)

func extractMin() : T

L22: while true

L23: R← READ(tree1)
L24: if R.dirty
L25: moundify(1)
L26: continue

L27: if R.list = nil return ⊤
L28: if CAS(tree1, R, 〈R.list.next, true, R.c + 1〉)
L29: retval← R.list.value
L30: delete(R.list)
L31: moundify(1)
L32: return retval

proc moundify(n : integer)

L33: while true

L34: N ← READ(treen)
L35: d← READ(depth)
L36: if ¬N.dirty return

L37: if n ∈ [2d−1, 2d − 1]
L38: if ¬CAS(treen, N, 〈N.list, false, N.c + 1〉)
L39: continue

L40: L← READ(tree2n)
L41: R← READ(tree2n+1)
L42: if L.dirty
L43: moundify(2n)
L44: continue

L45: if R.dirty
L46: moundify(2n + 1)
L47: continue

L48: if val(L) ≤ val(R) and val(L) < val(N)
L49: if DCAS(treen, N, 〈L.list, false, N.c + 1〉,

tree2n, L, 〈N.list, true, L.c + 1〉)
L50: moundify(2n)
L51: return

L52: elif val(R) < val(L) and val(R) < val(N)
L53: if DCAS(treen, N, 〈R.list, false, N.c + 1〉,

tree2n+1, R, 〈N.list, true, R.c + 1〉)
L54: moundify(2n + 1)
L55: return

L56: else ⊲ solve problem locally

L57: if CAS(treen, N, 〈N.list, false, N.c + 1〉)
L58: return

CAS/DCAS/DCSS, and is read atomically as part of the

READ operation. In practice, this is easily achieved on

32-bit x86 and SPARC architectures. Note that LNodes

are immutable, and thus do not require a counter.

We assume that CAS, DCAS, and DCSS do not fail

spuriously. We also assume that the implementations

of these operations are at least lock-free. Given these

assumptions, the lock-free progress guarantee for our

algorithm is based on the observation that failure in one

thread to make forward progress must be due to another

thread making forward progress.

Since MNodes are statically allocated in a mound that

never shrinks, the load performed by a READ will not

fault. However, if a thread has READ some node treen
as N , and wishes to dereference N.list, the dereference

could fault: a concurrent thread could excise and free the

head of treen.list as part of an extractMin, leading

to N.list being invalid. In our pseudocode, we employ

a non-faulting load. Garbage collection or object pools

would avoid the need for a non-faulting load.

B. Lock-Free Moundify

If no node in a mound is marked dirty, then every

node satisfies the mound property. In order for treen
to become dirty, either (a) treen must be the root,

and an extractMin must be performed on it, or else

(b) treen must be the child of a dirty node, and a

moundify operation must swap lists between treen
and its parent in the process of making the parent’s

dirty field false.

Since there is no other means for a node to become

dirty, the algorithm provides a strong property: in a

mound subtree rooted at n, if n is not dirty, then

val(treen) is at least as small as every value stored in

every list of every node of the subtree. This in turn leads

to the following guarantee: for any node treep with

children treel and treer, if treep is dirty and both treel
and treer are not dirty, then executing moundify(p)
will restore the mound property at treep.

In the lock-free algorithm, this guarantee enables the

separation of the extraction of the root’s value from

the restoration of the mound property, and also enables

the restoration of the mound property to be performed

independently at each level, rather than through a large

atomic section. This, in turn, allows the recursive clean-

ing moundify of one extractMin to run concur-

rently with another extractMin.

The lock-free moundify operation retains the obli-

gation to clear any dirty bit that it sets. However, since

the operation is performed at one level at a time, it

is possible for two operations to reach the same dirty
node. Thus, moundify(n) must be able to help clean



the dirty field of the children of treen, and must also

detect if it has been helped (in which case treen will

not be dirty).

The simplest case is when the operation has been

helped. In this case, the READ on line L34 discovers

that the parameter is a node that is no longer dirty.

The next simplest case is when moundify is called

on a leaf: a CAS is used to clear the dirty bit.

The third and fourth cases are symmetric, and han-

dled on lines L48–L55. In these cases, the children

treer and treel of treen are READ and found not to

be dirty. Furthermore, a swap (by DCAS) is needed

between treep and one of its children, in order to

restore the mound property. Note that a more expensive

“triple compare double swap” involving treen and both

its children is not required. Consider the case where

treer is not involved in the DCAS: for the DCAS to

succeed, treen must not have changed since line L34,

and thus any modification to treer between lines L41

and L49 can only lower val(treer) to some value

≥ val(treen).
In the final case, treen is dirty, but neither of its

children has a smaller val(). A simple CAS can clear

the dirty field of treen. This is correct because, as in

the above cases, while the children of treen can be

selected for insert, the inserted values must remain

≥ val(treen) or else treen would have changed.

C. The Lock-Free ExtractMin Operation

The lock-free extractMin operation begins by

reading the root node of the mound. If the node is dirty,

then there must be an in-flight moundify operation,

and it cannot be guaranteed that the val() of the root

is the minimum value in the mound. In this case, the

operation helps perform moundify, and then restarts.

There are two ways in which extractMin can

complete. In the first, the read on line L23 finds that

the node’s list is nil and not dirty. In this case, at the

time when the root was read, the mound was empty,

and thus ⊤ is returned. The linearization point is the

READ on line L23.

In the second case, extractMin uses CAS to atom-

ically extract the head of the list. The operation can only

succeed if the root does not change between the read and

the CAS, and it always sets the root to dirty. The CAS

is the linearization point for the extractMin: at the

time of its success, the value extracted was necessarily

the minimum value in the mound.

Note that the call to moundify on line L31 is

not strictly necessary: extractMin could simply

return, leaving the root node dirty. A subsequent

extractMin would inherit the obligation to restore

the mound property before performing its own CAS on

the root. Similarly, recursive calls to moundify on

lines L50 and L54 could be skipped.

After an extractMin calls moundify on the root,

it may need to make several recursive moundify calls

at lower levels of the mound. However, once the root is

not dirty, another extractMin can remove the new

minimum value of the root.

D. The Lock-Free Insert Operation

The simplest technique for making insert lock-free

is to use a k-Compare-Single-Swap operation (k-CSS),

in which the entire set of nodes that are read in the

binary search are kept constant during the insertion.

However, the correctness of insert depends only on

the insertion point treec and its parent node treep.

First, we note that expansion only occurs after several

attempts to find a suitable leaf fail: In insert, the

randLeaf and findInsertPoint functions read

the depth field once per set of attempts to find a suitable

node, and thus THRESHOLD leaves are guaranteed to

all be from the same level of the tree, though it may

not be the leaf level at any point after line L17. The

CAS on line L21 ensures expansion only occurs if the

random nodes were, indeed, all leaves.

Furthermore, neither the findInsertPoint nor

binarySearch method needs to ensure atomicity

among its reads: after a leaf is read and found to be

a valid starting point, it may change. In this case, the

binary search will return a node that is not a good

insertion point. This is indistinguishable from when

binary search finds a good node, only to have that

node change between its return and the return from

findInsertPoint. To handle these cases, insert

double-checks node values on lines L6 and L12, and

then ensures the node remains unchanged by updating

with a CAS or DCSS.

There are two cases for insert: when an insert is

performed at the root, and the default case.

First, suppose that v is being inserted into a mound,

v is smaller than the root value (val(tree1)), and

the root is not dirty. In this case, the insertion must

occur at the root. Furthermore, any changes to other

nodes of the mound do not affect the correctness

of the insertion, since they cannot introduce values

< val(tree1). A CAS suffices to atomically add to the

root, and serves as the linearization point (line L10).

Even if the root is dirty, it is acceptable to insert

at the root with a CAS, since the insertion does not

increase the root’s value. The insertion will conflict

with any concurrent moundify, but without preventing

lock-free progress. Additionally, if the root is dirty and



a moundify(1) operation is concurrent, then either

inserting v at the root will decrease val(tree1) enough

that the moundify can use the low-overhead code path

on line L57, or else it will be immaterial to the fact that

line L49 or L53 is required to swap the root with a child.

This brings us to the default case. Suppose that treec
is not the root. In this case, treec is a valid insertion

point if and only if val(treec) ≥ v, and for treec’s

parent treep, val(treep) ≤ v. Thus it does not matter

if the insertion is atomic with respect to all of the nodes

accessed in the binary search. In fact, both treep and

treec can change after findInsertPoint returns.

All that matters is that the insertion is atomic with

respect to some READs that support treec’s selection

as the insertion point. This is achieved through READs

on lines L6 and L12, and thus the reads performed by

findInsertPoint are immaterial to the correctness

of the insertion. The DCSS on line L14 suffices to

linearize the insert.

Note that the dirty fields of treep and treec do not

affect correctness. Suppose treec is dirty. Decreasing

the value at treec does not affect the mound prop-

erty between treec and its children, since the mound

property does not apply to nodes that are dirty, and

cannot affect the mound property between treep and

treec, or else findInsertPoint would not return c.
Next, suppose treep is dirty. In this case, for line L14

to be reached, it must hold that val(treep) ≤ v ≤
val(treec). Thus the mound property holds between

treep and treec, and inserting at treec will preserve the

mound property. The dirty field in treep is either due

to a propagation of the dirty field that will ultimately

be resolved by a simple CAS (e.g., val(treep) is ≤ the

val() of either of treep’s children), or else the dirty
field will be resolved by swapping treep with treec’s

sibling.

IV. A FINE-GRAINED LOCKING MOUND

We now present a mound based on fine-grained lock-

ing. To minimize the number of lock acquisitions, we

employ a hand-over-hand locking strategy for restoring

the mound property following an extractMin. In

this manner, it is no longer necessary to manage the

dirty field and sequence counter c in each mound node:

unlocked nodes are never dirty. We reuse the dirty field

as the lock bit.

We use the same findInsertPoint function as in

the lock-free algorithm, and thus allow for an inserting

thread to read a node that is locked due to a concur-

rent insert or extractMin. This necessitates that

locations be checked before modification.

The other noteworthy changes to the algorithm deal

with how and when locks are acquired and released.

Since moundify now uses hand-over-hand locking

during a downward traversal of the tree, it always locks

the parent before the child. To ensure compatibility,

insert must lock parents before children. To avoid

cumbersome lock reacquisition, we forgo the optimiza-

tion for inserting v at a node whose val() = v,

and also explicitly lock the parent of the insertion

point. Similarly, in moundify, we lock a parent and

its children before determining the appropriate action.

The resulting code appears in Listing 3. Note that the

resulting code is both deadlock and livelock-free.

In comparison to the lock-free mound, we expect

much lower latency, but without tolerance for preemp-

tion. The expectation of lower latency stems from the

reduction in the cost of atomic operations: even though

we must lock some nodes that would not be modified by

CAS in the lock-free algorithm, we are immune to ABA

problems and thus only need 32-bit CAS instructions.

Furthermore, a critical section corresponding to a DCAS

in the lock-free algorithm requires at most three CAS in-

structions in the locking algorithm. In contrast, lock-free

DCAS implementations require 5 CAS instructions [12].

A series of such DCAS instructions offers additional

savings, since locks are not released and reacquired:

a moundify that would require J DCAS instructions

(costing 5J CAS instructions) in the lock-free algorithm

requires only 2J + 1 CAS instructions in the locking

algorithm.

V. ADDITIONAL FEATURES OF THE MOUND

Our presentation focused on the use of mounds as the

underlying data structure for a priority queue. We now

discuss additional uses for the mound.

Probabilistic ExtractMin: Since the mound uses

a fixed tree as its underlying data structure, it is

amenable to two nontraditional uses. The first, proba-

bilistic extractMin, is also available in a heap: since

any MNode that is not dirty is, itself, the root of a

mound, extractMin can be executed on any such

node to select a random element from the priority queue.

By selecting with some probability shallow, nonempty,

non-root MNodes instead of the root, extractMin

can lower contention by probabilistically guaranteeing

the result to be close to the minimum value.

ExtractMany: It is possible to execute an

extractMany, which returns several elements from

the mound. In the common case, most MNodes in the

mound will be expected to hold lists with a modest num-

ber of elements. Rather than remove a single element,

extractMany returns the entire list from a node, by



Listing 3 The Fine-Grained Locking Mound Algorithm

func setLock(i : integer) : MNode

F1: while true

F2: N ← READ(treei)
F3: if ¬N.dirty and CAS(treei, N, 〈N.list, true〉)
F4: return N

func extractMin() : T

F5: R← setLock(1)
F6: if R.list = nil ⊲ check for empty mound

F7: tree1 = 〈R.list, false〉 ⊲ unlock the node

F8: return ⊤
F9: tree1 ← 〈R.list.next, true〉 ⊲ remove list head, keep node locked

F10: retval = R.list.value
F11: delete(R.list)
F12: moundify(1)
F13: return retval

proc moundify(n : integer)

F14: while true

F15: N ← READ(treen)
F16: d← depth
F17: if n ∈ [2d−1, 2d − 1] ⊲ Is n a leaf?

F18: treen ← 〈treen.list, false〉
F19: return

F20: L← setLock(2n)
F21: R← setLock(2n + 1)
F22: if val(L) ≤ val(R) and val(L) < val(N)
F23: tree2n+1 ← 〈R.list, false〉 ⊲ unlock right child

F24: treen ← 〈L.list, false〉 ⊲ update and unlock parent

F25: tree2n ← 〈N.list, true〉 ⊲ keep left locked after update

F26: moundify(2n)
F27: elif val(R) < val(L) and val(R) < val(N)
F28: tree2n ← 〈L.list, false〉 ⊲ unlock left child

F29: treen ← 〈R.list, false〉 ⊲ update and unlock parent

F30: tree2n+1 ← 〈N.list, true〉 ⊲ keep right locked after update

F31: moundify(2n + 1)
F32: else ⊲ Solve problem locally by unlocking treen and its children

F33: treen ← 〈N.list, false〉
F34: tree2n ← 〈L.list, false〉
F35: tree2n+1 ← 〈R.list, false〉

proc insert(v : T)

F36: while true

F37: c← findInsertPoint(v)
F38: if c = 1 ⊲ insert at root?

F39: C ← setLock(c)
F40: if val(C) ≥ v ⊲ double-check node

F41: treec ← 〈new LNode(v, C.list), false〉
F42: return

F43: treec ← 〈C.list, false〉 ⊲ unlock root and start over

F44: continue

F45: P ← setLock(c/2)
F46: C ← setLock(c)
F47: if val(C) ≥ v and val(P ) ≤ v ⊲ check insertion point

F48: treec ← 〈new LNode(v, C.list), false〉
F49: treec/2 ← 〈P.list, false〉
F50: return

F51: else ⊲ unlock treec and treec/2, then try again

F52: treec/2 ← 〈P.list, false〉
F53: treec ← 〈C.list, false〉

setting the list pointer to nil and dirty to true, and

then calling moundify. This technique can be used to

implement prioritized work stealing.

VI. EVALUATION

In this section, we evaluate the performance of

mounds using targeted microbenchmarks. Experiments

labeled “Niagara2” were collected on a 64-way Sun

UltraSPARC T2 with 32 GB of RAM, running Solaris

10. The Niagara2 has eight cores, each eight-way mul-

tithreaded. On the Niagara2, code was compiled using

gcc 4.3.2 with –O3 optimizations. Experiments labeled

“x86” were collected on a 12-way HP z600 with 6GB

RAM and a Intel Xeon X5650 processor with six cores,

each two-way multithreaded, running Linux 2.6.32. The

x86 code was compiled using gcc 4.4.3, with –O3

optimizations. On both machines, the largest level of

the cache hierarchy is shared among all threads. The

Niagara2 cores are substantially simpler than the x86

cores, and have one less level of private cache.

A. Implementation Details

We implemented DCAS using a modified version of

the technique proposed by Harris et al [12]. The re-

sulting implementation resembles an inlined nonblock-

ing software transactional memory [13]. We chose to

implement DCSS using a DCAS. Rather than using

a flat array, we implemented the mound as a 32-

element array of arrays, where the nth second-level

array holds 2n elements. We did not pad MNode types

to a cache line. This implementation ensures minimal

space overhead for small mounds, and we believe it to

be the most realistic for real-world applications, since

it can support extremely large mounds. We set the

THRESHOLD constant to 8. Changing this value did not

affect performance, though we do not claim optimality.

Since the x86 does not offer non-faulting loads,

we used a per-thread object pool to recycle LNodes
without risking their return to the operating system. To

enable atomic 64-bit reads on 32-bit x86, we used a

lightweight atomic snapshot algorithm, as 64-bit atomic

loads can otherwise only be achieved via high-latency

floating point instructions.

B. Effects of Randomization

Unlike heaps, mounds do not guarantee balance,

instead relying on randomization. To measure the effect

of this randomization on overall mound depth, we

ran a sequential experiment where 220 inserts were

performed, followed by 219 + 218 extractMins. We

measured the fullness of every mound level after the

insertion phase and during the remove phase. We also

measured the fullness whenever the depth of the mound

increased. We varied the order of insertions, using either

randomly selected keys, keys that always increased,

or keys that always decreased. These correspond to

the average, worst, and best cases for mound depth.

Lastly, we measured the impact of repeated insertions

and removals on mound depth, by initializing a mound

with 28, 216, or 220 elements, and then performing 220



Insert Order % Fullness of Non-Full Levels

Increasing 99.96% (17), 97.75% (18), 76.04% (19), 12.54% (20)

Random 99.99% (16), 96.78% (17), 19.83% (18)

Table I: Incomplete mound levels after 220 insertions.

Incompleteness at the largest level is expected.

Initialization Ops Non-Full Levels

Increasing 524288 99.9% (16), 94.6% (17), 61.4% (18),

17.6% (19), 1.54% (20)

Increasing 786432 99.9% (15), 93.7% (16), 59.3% (17),

17.6% (18), 2.0% (19), 0.1% (20)

Random 524288 99.7% (16), 83.4% (17), 14.7% (18)

Random 786432 99.7% (15), 87.8% (16), 38.9% (17), 3.6% (18)

Table II: Incomplete mound levels after many

extractMins. Mounds were initialized with 220 ele-

ments, using the same insertion orders as in Table I.

randomly selected operations (an equal mix of insert

and extractMin).

Table I describes the levels of a mound that have

nodes with empty lists after 220 insertions. For all but

the last of these levels, incompleteness is a consequence

of the use of randomization. Each value inserted was

chosen according to one of three policies. When each

value is larger than all previous values (“Increasing”),

the worst case occurs. Here, every list has exactly one

element, and every insertion occurs at a leaf. This leads

to a larger depth (20 levels), and to several levels being

incomplete. However, note that the mound is still only

one level deeper than a corresponding heap would be

in order to store as many elements. 1

When “Random” values are inserted, we see the depth

of the mound drop by two levels. This is due to the

average list holding more than one element. Only 56K

elements were stored in leaves (level 18), and 282K

elements were stored in the 17th level, where lists

averaged 2 elements. 179K elements were stored in

the 16th level, where lists averaged 4 elements. The

longest average list (14 elements) was at level 10. The

longest list (30) was at level 7. These results suggest

that mounds should produce more space-efficient data

structures than either heaps or skiplists, and also confirm

that randomization is an effective strategy.

We next measured the impact of extractMin on

the depth of mounds. In Table II, we see that ran-

domization leads to levels remaining partly filled for

much longer than in heaps. After 75% of the elements

have been removed, the deepest level remains nonempty.

Furthermore, we found that the repeated extractMin

operations decreased the average list size significantly.

After 786K removals, the largest list in the mound had

1The other extreme occurs when elements are inserted in decreasing
order, where the mound organizes itself as a sorted list at the root.

Initial Size Incomplete Levels

2
20 99.9% (16), 99.4% (17), 74.3% (18)

2
16 99.7% (13), 86.1% (14)

2
8 95.3% (6), 68.8% (7)

Table III: Incomplete mound levels after 220 random

operations, for mounds of varying sizes. Random ini-

tialization order was used.

only 8 elements.

To simulate real-world use, we pre-populated a

mound, and executed 220 operations (an equal mix of

insert and extractMin), using randomly selected

keys for insertions. The result in Table III shows that

this usage does not lead to greater imbalance or to

unnecessary mound growth. However, the incidence of

removals did reduce the average list size. After the

largest experiment, the average list size was only 3.

C. Insert Performance

Next, we evaluate the latency and throughput of

insert operations. As comparison points, we include

the Hunt heap [8], which uses fine-grained locking,

and a quiescently consistent, skiplist-based priority

queue [6], [10, Ch. 3]2. Each experiment is the average

of three trials, and each trial performs a fixed number of

operations per thread. We conducted additional exper-

iments with the priority queues initialized to a variety

of sizes, ranging from hundreds to millions of entries.

We present only the most significant trends.

Figure 2 (a) and (e) present insert throughput.

The extremely strong performance of the fine-grained

locking mound is due both to its asymptotic superior-

ity, and its low-overhead implementation using simple

spinlocks. In contrast, while the lock-free mounds scale

well, they have much higher latency. On the Niagara2,

CAS is implemented in the L2 cache; thus there is a

hardware bottleneck after 8 threads, and high overhead

due to our implementation of DCAS with multiple

CASes. On the x86, both 64-bit atomic loads and

DCAS contribute to the increased latency. As previously

reported by Lotan and Shavit, insertions are costly for

skip lists. The hunt heap has low single-thread overhead,

but the need to “trickle up” causes inserts to contend

with each other, which hinders scalability.

D. ExtractMin Performance

In Figure 2 (b) and (f), each thread performs 216

extractMin operations on a priority queue that is

pre-populated with exactly enough elements that the

last of these operations will leave the data structure

2We extended Vincent Gramoli’s open-source skiplist.



 0

 5000

 10000

 15000

 20000

 25000

 0  8  16  24  32  40  48  56  64  72

T
h

ro
u

g
h

p
u

t 
(1

0
0

0
 O

p
s
/s

e
c
)

Threads

Mound (Lock)
Mound (LF)

Hunt Heap (Lock)
Skip List (QC)

(a) Niagara2 Insert

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  8  16  24  32  40  48  56  64  72

T
h

ro
u

g
h

p
u

t 
(1

0
0

0
 O

p
s
/s

e
c
)

Threads

(b) Niagara2 ExtractMin

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  8  16  24  32  40  48  56  64  72

T
h

ro
u

g
h

p
u

t 
(1

0
0

0
 O

p
s
/s

e
c
)

Threads

(c) Niagara2 Mixed

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0  8  16  24  32  40  48  56  64  72

T
h

ro
u

g
h

p
u

t 
(1

0
0

0
 O

p
s
/s

e
c
)

Threads

(d) Niagara2 ExtractMany

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0  2  4  6  8  10  12  14  16

T
h

ro
u

g
h

p
u

t 
(1

0
0

0
 O

p
s
/s

e
c
)

Threads

Mound (Lock)
Mound (LF)

Hunt Heap (Lock)
Skip List(QC)

(e) x86 Insert

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0  2  4  6  8  10  12  14  16

T
h

ro
u

g
h

p
u

t 
(1

0
0

0
 O

p
s
/s

e
c
)

Threads

(f) x86 ExtractMin

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  2  4  6  8  10  12  14  16

T
h

ro
u

g
h

p
u

t 
(1

0
0

0
 O

p
s
/s

e
c
)

Threads

(g) x86 Mixed

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0  2  4  6  8  10  12  14  16

T
h

ro
u

g
h

p
u

t 
(1

0
0

0
 O

p
s
/s

e
c
)

Threads

(h) x86 ExtractMany

Figure 2: In insert test (a and e), each thread inserts 216 randomly selected values. In extractMin test (b

and f), each thread performs 216 extractMin operations to make the priority queue empty. In mixed operation

test (c and g), equal mix of random insert and extractMin operations are performed on a queue initialized

with 216 random elements. In extractMany test (d and h), the mound is initialized with 220 elements, and then

threads repeatedly call extractMany until the mound is empty.

empty. The skip list implementation is almost perfectly

disjoint-access parallel, and thus on the Niagara2, it

scales well. To extract the minimum, threads attempt

to mark (CAS) the first “undeleted” node as “deleted”

in the bottom level list, and keeps searching if the

marking failed. On successfully marking a node as

“deleted”, the thread performs a subsequent physical

removal of the marked node, which mitigates further

contention between operations. On the x86, the deeper

cache hierarchy results in a slowdown for the skiplist

from 1–6 threads, after which the use of multithreading

decreases cache misses and results in slight speedup.

The algorithms of the locking mound and the Hunt

queue are similar, and their performance curves match

closely. Slight differences on the x86 are largely due to

the shallower tree of the mound. However, in both cases

performance is substantially worse than for skiplists. As

in the insert experiment, the lock free mound pays

additional overhead due to its use of DCAS. Since there

are O(log(N)) DCASes, instead of the single DCAS

in insert, the overhead of the lock free mound is

significantly higher than the locking mound.

E. Scalability of Mixed Workloads

The behavior of a concurrent priority queue is ex-

pected to be workload dependent. While it is unlikely

that any workload would consist of repeated calls to

insert and extractMin with no work between

calls, we present such a stress test microbenchmark in

Figure 2 (c) and (g) as a more realistic evaluation than

the previous single-operation experiments.

In the mixed workload, we observe the mounds pro-

vide better performance at lower thread counts. On the

x86, the locking mound provides the best performance

until 10 threads, but suffers under preemption. The lock-

free mounds outperform skiplists until 6 threads. As

in the extractMin test, once the point of hardware

multithreading is reached, the large number of CASes

becomes a significant overhead.

F. ExtractMany Performance

One of the advantages of the mound is that it stores

a collection of elements at each tree node. As discussed

in Section V, implementing extractMany entails

only a simple change to the extractMin operation.

However, its effect is pronounced. As Figure 2 (d) and

(h) show, extractMany scales well.

This scaling supports our expectation that mounds

will be a good fit for applications that employ prioritized

or probabilistic work stealing. However, there is a risk

that the quality of data in each list is poor. For example,

if the second element in the root list is extremely large,

then using extractMany will not provide a set of

high-priority elements. Table IV presents the average

list size and average value of elements in a mound after

220 insertions of random values. As desired, extracted



Level List Size Avg. Value Level List Size Avg. Value

0 12 52.5M 9 15.46 367M

1 15.5 179M 10 13.81 414M

2 21.75 215M 11 12.33 472M

3 21.75 228M 12 10.57 538M

4 21.18 225M 13 8.80 622M

5 20.78 263M 14 7.22 763M

6 19.53 294M 15 5.47 933M

7 18.98 297M 16 3.67 1.14B

8 17.30 339M 17 2.14 1.45B

Table IV: Average list size and list value of mound

nodes after 220 random insertions.

lists are large, and have an average value that increases

with tree depth. Similar experiments using values from

smaller ranges are even more pronounced.

VII. CONCLUSIONS

In this paper we presented the mound, a new data

structure for use in concurrent priority queues. The

mound combines a number of novel techniques to

achieve its performance and progress guarantees. Chief

among these are the use of randomization and the

employment of a structure based on a tree of sorted lists.

Linearizable mounds can be implemented in a highly

concurrent manner using either pure-software DCAS or

fine-grained locking. Their structure also allows several

new uses. We believe that prioritized work stealing is

particularly interesting.

In our evaluation, we found mound performance to

exceed that of the lock-based Hunt priority queue,

and to rival that of skiplist-based priority queues. The

performance tradeoffs are nuanced, and will certainly

depend on workload and architecture. Workloads that

can employ extractMany or that benefit from fast

insert will benefit from the mound. The difference

in performance between the x86 and Niagara2 suggests

that deep cache hierarchies favor mounds.

The lock-free mound is a practical algorithm de-

spite its reliance on software DCAS. We believe this

makes it an ideal data structure for designers of fu-

ture hardware. In particular, the question of what new

concurrency primitives (such as DCAS and DCSS, best-

effort hardware transactional memory [14], or even

unbounded transactional memory) should be added to

next-generation architectures will be easier to address

given algorithms like the mound, which can serve as

microbenchmarks and demonstrate the benefit of faster

hardware multiword atomic operations.

REFERENCES

[1] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, In-
troduction to Algorithms, 2nd edition. MIT Press and
McGraw-Hill Book Company, 2001.

[2] W. Pugh, “Skip Lists: A Probabilistic Alternative to
Balanced Trees,” Communications of the ACM, vol. 33,
pp. 668–676, June 1990.

[3] M. M. Michael and M. L. Scott, “Simple, Fast, and
Practical Non-Blocking and Blocking Concurrent Queue
Algorithms,” in Proceedings of the 15th ACM Sympo-
sium on Principles of Distributed Computing, May 1996.

[4] K. Fraser, “Practical Lock-Freedom,” Ph.D. dissertation,
King’s College, University of Cambridge, Sep. 2003.

[5] M. P. Herlihy and J. M. Wing, “Linearizability: a
Correctness Condition for Concurrent Objects,” ACM
Transactions on Programming Languages and Systems,
vol. 12, no. 3, pp. 463–492, 1990.

[6] M. Herlihy and N. Shavit, The Art of Multiprocessor
Programming. Morgan Kaufmann, 2008.

[7] A. Israeli and L. Rappoport, “Disjoint-Access-Parallel
Implementations of Strong Shared Memory Primitives,”
in Proceedings of the 13th ACM Symposium on Princi-
ples of Distributed Computing, 1994.

[8] G. Hunt, M. Michael, S. Parthasarathy, and M. Scott,
“An Efficient Algorithm for Concurrent Priority Queue
Heaps,” Information Processing Letters, vol. 60, pp.
151–157, Nov. 1996.

[9] K. Dragicevic and D. Bauer, “Optimization Techniques
for Concurrent STM-Based Implementations: A Con-
current Binary Heap as a Case Study,” in Proceedings
of the 23rd International Symposium on Parallel and
Distributed Processing, Rome, Italy, May 2009.

[10] I. Lotan and N. Shavit, “Skiplist-Based Concurrent Pri-
ority Queues,” in Proceedings of the 14th International
Parallel and Distributed Processing Symposium, Can-
cun, Mexico, May 2000.

[11] H. Sundell and P. Tsigas, “Fast and Lock-Free Concur-
rent Priority Queues for Multi-Thread Systems,” Journal
of Parallel and Distributed Computing, vol. 65, pp. 609–
627, May 2005.

[12] T. Harris, K. Fraser, and I. Pratt, “A Practical Multi-
word Compare-and-Swap Operation,” in Proceedings of
the 16th International Conference on Distributed Com-
puting, Toulouse, France, Oct. 2002.

[13] T. Harris and K. Fraser, “Language Support for
Lightweight Transactions,” in Proceedings of the 18th
ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, Oct. 2003.

[14] D. Dice, Y. Lev, M. Moir, and D. Nussbaum, “Early
Experience with a Commercial Hardware Transactional
Memory Implementation,” in Proceedings of the 14th
International Conference on Architectural Support for
Programming Languages and Operating Systems, Wash-
ington, DC, Mar. 2009.


