
A Lock-Free, Array-Based Priority Queue ∗

Yujie Liu and Michael Spear

Lehigh University

{yul510, spear}@cse.lehigh.edu

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming

General Terms Algorithms, Design, Performance

Keywords Lock-Free, Linearizability, Randomization, Heap, Pri-
ority Queue, Synchronization, Mound

1. Introduction

Priority queues are useful in scheduling, discrete event simulation,
networking (e.g., routing and real-time bandwidth management),
graph algorithms (e.g., Dijkstra’s algorithm), and artificial intelli-
gence (e.g., A∗ search). In these and other applications, not only
is it crucial for priority queues to have low latency, but they must
also offer good scalability and guarantee progress. Furthermore, the
insert and extractMin operations are expected to have no worse
than O(log(N)) complexity. In practice, this has focused imple-
mentation on heaps [1, Ch. 6] [4] and skip lists [6].

This paper introduces a new lock-free, linearizable [3] prior-
ity queue, called the mound. A mound is a tree of sorted lists.
Mounds employ randomization when choosing a starting leaf for
an insert, which avoids the need for insertions to contend for a
mound-wide counter, but introduces the possibility that a mound
will have “empty” nodes in non-leaf positions. The use of sorted
lists avoids the need to swap a leaf into the root position dur-
ing extractMin. Combined with the use of randomization, this
ensures disjoint-access parallelism. Asymptotically, extractMin
is O(log(N)). The sorted list also obviates the use of swapping
to propagate a new value to its final destination in the mound
insert operation. Instead, insert uses a binary search along a
path in the tree to identify an insertion point, and then uses a
single writing operation to insert a value. The insert complex-
ity is O(log(log(N))). Our lock-free mound employs a software
DCAS [2] to implement multiword atomic operations.

2. The Mound Algorithm

We focus on the operations needed to implement a lock-free
priority queue with a mound, namely extractMin and insert.
We permit the mound to store arbitrary non-unique, totally-ordered

∗ This research was sponsored in part by National Science Foundation Grant
CNS-1016828

Copyright is held by the author/owner(s).

PPoPP’12, February 25–29, 2012, New Orleans, Louisiana, USA.

ACM 978-1-4503-1160-1/12/02.

values. We reserve ⊤ as the return value of an extractMin on an
empty mound.

As is common when building lock-free algorithms, we require
that every shared memory location be read via a single atomic READ
operation, which stores its result in a local variable. All updates
of shared memory are performed using CAS, DCAS, or DCSS [2].
Furthermore, every mutable shared location is augmented with a
counter (c). The counter is incremented on every update, and is
read atomically as part of the READ operation.

A mound is a rooted tree of sorted lists. The notation val(n)
denotes the value of the first element in the list stored at node n
(namely n.list). If n.list is empty, val(n) returns ⊤.

In a traditional min-heap, the heap invariant only holds at the
boundaries of functions, ensuring that the value of each node is no
greater than the value of any child. This property is also the cor-
rectness property for a mound when there are no in-progress oper-
ations. When an operation is between its invocation and response,
we employ a dirty field to express this “mound property”: for ev-
ery node c and its parent p, (¬p.dirty) ⇒ val(p) ≤ val(c).

When inserting a value v into the mound, the only requirement
is that there exist some node c such that val(c) ≥ v and if c
is not the root, for the parent p of c, val(p) ≤ v. When such
a node is identified, v can be inserted as the new head of c’s
list. Inserting v as the head of c’s list clearly cannot violate the
mound property: decreasing val(c) to v does not violate the mound
property between p and c, since v ≥ val(p). Furthermore, for
every child c′ of c, it already holds that val(c′) ≥ val(c). Since
v ≤ val(c), setting val(c) to v does not violate the mound
property between c and its children.

The insert(v) method operates as follows: it selects a random
leaf l and compares v to val(l). If v ≤ val(l), then either the
parent of l has a val() less than v, in which case the insertion can
occur at l, or else there must exist some ancestor c such that in-
serting v at c.list preserves the mound property. A binary search is
employed to find this ancestor. Note that the binary search is along
an ancestor chain of logarithmic depth, and thus the search intro-
duces O(log(log(N)) overhead. The leaf is ignored if val(l) < v,
since the mound property guarantees that every ancestor a of l must
have a val(a) < v, and another leaf is randomly selected. If too
many unsuitable leaves are selected (bounded by THRESHOLD),
the mound is expanded by one level. After expansion, every leaf
l is guaranteed to be available (val(l) = ⊤ > v), and thus any
random leaf is a suitable starting point for the binary search.

extractMin is similar to its analog in traditional heaps. When
the minimum value is extracted from the root, we return (and
remove) the first element of the root’s list as the result, or ⊤ if
the list is empty. This behavior is equivalent to the traditional heap
behavior of moving some leaf node’s value into the root. At this
point, the mound property may not be preserved between the root
and its children, so the root’s dirty field is set true.

moundify restores the mound property throughout the tree.
When moundify is called on a node n, it first ensures the children



Listing 1 The Lock-free Mound Algorithm

type LNode
T value ⊲ value stored in this list node
LNode∗ next ⊲ next element in list

type CMNode
LNode∗ list ⊲ sorted list of values stored at this node
boolean dirty ⊲ true if mound property does not hold

int c ⊲ counter – incremented on every update

global variables
treei∈[1,N] ← 〈nil, false, 0〉 : CMNode ⊲ array of mound nodes

depth← 1 : N ⊲ depth of the mound tree

func val(N : CMNode) : T

1: if N.list = nil return ⊤ else return N.list.value

proc insert(v : T )

2: while true
3: c← findInsertPoint(v)
4: C ← READ(treec)
5: if val(C) ≥ v
6: C′ ← 〈new LNode(v, C.list), C.dirty, C.c + 1〉
7: if c = 1
8: if CAS(treec, C, C′) return

9: else

10: P ← READ(treec/2)

11: if val(P ) ≤ v
12: if DCSS(treec, C, C′, treec/2, P ) return

13: delete(C′.list)

func findInsertPoint(v : N) : N

14: while true

15: d← READ(depth)
16: for attempts ← 1 . . . THRESHOLD

17: leaf ← randLeaf(d)
18: if val(leaf) ≥ v return binarySearch(leaf, 1, v)
19: CAS(depth, d, d + 1)

func randLeaf(d : N) : N

20: return random i ∈ [2d−1, 2d − 1]

func extractMin() : T

21: while true

22: R← READ(tree1)
23: if R.dirty
24: moundify(1)
25: continue

26: if R.list = nil return ⊤
27: if CAS(tree1, R, 〈R.list.next, true, R.c + 1〉)
28: retval← R.list.value
29: delete(R.list)
30: moundify(1)
31: return retval

proc moundify(n : N)

32: while true

33: N ← READ(treen)
34: d← READ(depth)
35: if ¬N.dirty return

36: if n ∈ [2d−1, 2d − 1] return

37: L← READ(tree2n)
38: R← READ(tree2n+1)
39: if L.dirty
40: moundify(2n)
41: continue

42: if R.dirty
43: moundify(2n + 1)
44: continue

45: if val(L) ≤ val(R) and val(L) < val(N)
46: if DCAS(treen, N, 〈L.list, false, N.c + 1〉,

tree2n, L, 〈N.list, true, L.c + 1〉)
47: moundify(2n)
48: return
49: elif val(R) < val(L) and val(R) < val(N)
50: if DCAS(treen, N, 〈R.list, false, N.c + 1〉,

tree2n+1, R, 〈N.list, true, R.c + 1〉)
51: moundify(2n + 1)
52: return

53: else ⊲ Solve problem locally

54: if CAS(treen, N, 〈N.list, false, N.c + 1〉) return

of n have dirty set to false, by recursively invoking moundify

on any dirty children. moundify then inspects the val() of n
and each child, and determines which is smallest. If n has the
smallest value, or if n is a leaf, then the mound property already
holds, and the operation completes. Otherwise, swapping n with
the child having the smallest val() restores the mound property at
n. However, the child involved in the swap now may not satisfy
the mound property with its children, and thus its dirty field is set
true. Thus just as in a traditional heap, O(log(N)) calls suffice to
restore the mound property.

3. Discussion

In a companion technical report, we present sequential and a fine-
grained locking based mound algorithms [5]. In our evaluation, we
found mound performance to exceed that of the lock-based Hunt
priority queue, and to rival that of skiplist-based priority queues.

We also identified nontraditional uses for mounds. The first,
probabilistic extractMin, is also available in a heap: since any
CMNode that is not dirty is, itself, the root of a mound, extractMin
can be executed on any such node to select a random element
from the priority queue. By selecting with some probability shal-
low, nonempty, non-root CMNodes, extractMin can lower con-
tention by probabilistically guaranteeing the result to be close
to the minimum value. Secondly, it is possible to execute an
extractMany, which returns several elements from the mound.

In the common case, most CMNodes in the mound will be ex-
pected to hold lists with a modest number of elements. Rather than
remove a single element, extractMany returns the entire list from
a node, by setting the list pointer to nil and dirty to true, and
then calling moundify. This technique can be used to implement
lock-free prioritized work stealing.

References

[1] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to

Algorithms, 2nd edition. MIT Press and McGraw-Hill Book Company,
2001.

[2] T. Harris, K. Fraser, and I. Pratt. A Practical Multi-word Compare-and-
Swap Operation. In Proceedings of the 16th International Conference
on Distributed Computing, Toulouse, France, Oct. 2002.

[3] M. P. Herlihy and J. M. Wing. Linearizability: a Correctness Condi-
tion for Concurrent Objects. ACM Transactions on Programming Lan-

guages and Systems, 12(3):463–492, 1990.

[4] G. Hunt, M. Michael, S. Parthasarathy, and M. Scott. An Efficient Al-
gorithm for Concurrent Priority Queue Heaps. Information Processing

Letters, 60:151–157, Nov. 1996.

[5] Y. Liu and M. Spear. A Lock-Free, Array-Based Priority Queue.
Technical Report LU-CSE-11-004, Lehigh University, 2011.

[6] I. Lotan and N. Shavit. Skiplist-Based Concurrent Priority Queues. In
Proceedings of the 14th International Parallel and Distributed Process-

ing Symposium, Cancun, Mexico, May 2000.


