
Delegation and Nesting in Best-effort Hardware
Transactional Memory∗

Yujie Liu
Lehigh University

yul510@cse.lehigh.edu

Stephan Diestelhorst
Advanced Micro Devices, Inc.

and Dresden University of
Technology

stephan.diestelhorst
@amd.com

Michael Spear
Lehigh University

spear@cse.lehigh.edu

ABSTRACT
The guiding design principle behind best-effort hardware transac-
tional memory (BEHTM) is simplicity of implementation and ver-
ification. Only minimal modifications to the base processor archi-
tecture are allowed, thereby reducing the burden of verification and
long-term support. In exchange, the hardware can support only rel-
atively simple multiword atomic operations, and must fall back to
a software run-time for any operation that exceeds the abilities of
the hardware.

This paper demonstrates that BEHTM simplicity does not pro-
hibit advanced and complex transactional behaviors. We exploit
support for immediate non-transactional stores in the AMD Ad-
vanced Synchronization Facility to build a mechanism for commu-
nication among transactions. While our system allows arbitrary
communication patterns, we focus on a design point where each
transaction communicates with a system-wide manager thread. The
API for the manager thread allows BEHTM transactions to dele-
gate unsafe operations (such as system calls) to helper threads, and
also enables the creation of nested parallel transactions. This paper
also explores which forms of nesting are possible, and identifies
constraints on nesting that are a consequence of how BEHTM is
designed.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming; C.1.4 [Processor Architectures]: Parallel
Architectures

General Terms
Algorithms, Design

∗At Lehigh University, this work was supported by the US National
Science Foundation under grant CNS-1016828; and by financial
support from Google.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’12, June 25–27, 2012, Pittsburgh, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1213-4/12/06 ...$10.00.

Keywords
Transactional Memory, Nesting, Synchronization, Allocation

1 Introduction
The promise of transactional memory (TM) [24] lies in its sim-
plicity: rather than reason about mutual exclusion, lock granular-
ity, and deadlocks, with TM programmers simply annotate code
regions that must execute atomically; a run-time system ensures
correctness while finding as much parallelism as possible among
these atomic blocks. Unfortunately, pure software TM (STM) in-
curs significant overhead due to per-access conflict detection over-
heads. Hardware TM (HTM) requires significant modification to
processor implementations, possibly including the cache coherence
protocol. The resulting verification requirements are considered too
onerous for a technology that has not yet proven its merit.

An emerging approach is to minimally extend the hardware to
provide limited support for TM. The resulting best-effort HTM
(BEHTM) executes some transactions fully in hardware, and re-
quires a fallback to a software system in all other cases. Example
BEHTM systems include the Sun Rock prototype processor [13,
18], Intel’s Transactional Synchronization Extensions (TSX) [27],
and the AMD Advanced Synchronization Facility proposal
(ASF)1 [15]. BEHTM systems do not modify the cache coherence
protocol, and they place hard constraints on the number of locations
that can be read or written by a BEHTM transaction. They also for-
bid certain operations (e.g., system calls) within BEHTM transac-
tions, and permit transactions to abort and restart due to low-level
hardware events (such as TLB misses or page faults).

Recent efforts have shown that it is possible to exploit BEHTM
to simplify algorithm design [17], make a locking STM non-blocking
with minimal overhead [20], and even accelerate a general-purpose
TM system by running small transactions entirely in hardware [16,
39]. In this last category, a key challenge is to minimize the number
of transactions that must fall back to the software system to com-
plete, because the existence of such transactions causes hardware
transactions to incur greater overhead.

Surprisingly, many simple operations, such as memory alloca-
tion, require BEHTM transactions to fall back to software mode.
In HTM publications, true allocation often is avoided artificially by
having each thread pre-allocate object pools that are large enough
to accommodate all possible allocations needed by a simulation. In
STM, allocation is typically managed via ad-hoc open nesting [26].
While the details of why allocation within a hardware transaction

1ASF is an experimental feature and has not been announced for
any future product.

is problematic are deferred to Appendix A, it suffices to note that
any allocation might perform a system call to enlarge the heap, and
that non-transactionally calling a lock-based allocator is dangerous
because the parent transaction risks aborting while holding a lock.

In the AMD ASF proposal, a BEHTM transaction can perform
immediate non-transactional loads and stores. These accesses are
not intended for general use: if used incorrectly, they can violate
failure atomicity and cause memory corruption. However, Riegel
et al. demonstrated that careful use of non-transactional accesses
can significantly enhance the usefulness of BEHTM [39].

In a similar vein, we show that the existing support for non-
transactional accesses in ASF can be used to enable communication
among transactions. In our system, transactions communicate with
nontransactional helper threads, which can perform allocation and
system calls on the transaction’s behalf. In addition to supporting
delegation, we show that helper threads can serve as nested trans-
action coordinators, and thus that it is possible to implement some
forms of nested parallel transactions in ASF. We also identify nest-
ing patterns that cannot be supported by BEHTM. These include
unattainable patterns of sharing between a parent and its child, as
well as limits on the number of closed-nested child BEHTM trans-
actions that can exist in any parent/children relationship.

The remainder of this paper is organized as follows: We provide
more background on BEHTM operation in Section 2. In Section 3,
we discuss the abstract communication channel that we implement
using non-transactional accesses. Sections 4 and 5 discuss how
this communication channel can be used for delegation and nesting,
respectively. Section 6 discusses relationships with prior work. In
Section 7, we summarize our findings and suggest directions for
future research.

2 BEHTM Background
Early HTM proposals aimed to provide strong performance without
requiring a supporting software run-time system. To this end, they
modified the processor cache [23,33] and included mechanisms for
supporting “unbounded” transactions [2, 8, 32, 37]. Such transac-
tions could speculatively access (for reading and writing) more data
than could fit in their L1 cache, and could survive context switches.

While appealing, these proposals required significant changes to
hard-to-verify components of the processor. A more pragmatic
approach, embodied by best-effort TM designs, is to minimally
change the hardware such that only a limited class of transactions
are supported, and then delegate the execution of all other transac-
tions to a software run-time.

The most prominent examples of BEHTM are the Sun Rock pro-
totype processor [13,18] and the AMD Advanced Synchronization
Facility proposal (ASF) [15].2 These systems share many charac-
teristics. They both use a traditional invalidation cache protocol,
resulting in an “attacker wins” conflict resolution policy [10], with
conflicts detected at the granularity of cache lines. While this pro-
tocol allows for obstruction-free transactions, it is prone to livelock
and false conflicts [10], and thus a software contention manager is
recommended even for hardware transactions.

Both proposals place limits on the behavior of transactional code
in terms of the absolute number of locations that can be read or
written. In Rock, the L1 cache buffers transactional loads, with L1
capacity and dynamic associativity conflicts determining the total

2Details about the implementation of Intel’s TSX hardware were
not available at the time this paper was written, but available infor-
mation suggests that apart from its lack of support for nontransac-
tional loads and stores within transactions, TSX should behave like
Rock and ASF.

number of loads a transaction can perform. Transactional stores
stall in the store buffer until the transaction commits. Multiple
stores to the same location are not likely to be coalesced. As an
unimplemented proposal, ASF is less concrete. It allows for the
L1 cache to bound the number of loads and stores, for a dedicated
processor structure (the locked line buffer, or LLB) to manage all
transactional accesses, or for a combination of the two (e.g., an
LLB for stores and the L1 cache for loads) [14].

The most notable differences between Rock and ASF relate to
non-transactional accesses. Both support non-transactional loads
that happen “immediately.” In ASF, immediate non-transactional
stores are also allowed. These are presumably intended to prevent
capacity from being wasted on stack writes in the register-limited
x86 architecture. In Rock, non-transactional stores stall in the store
buffer. Thus while they still “happen,” they do so only when the
transaction commits or aborts.

For completeness, we also note that Rock checkpoints the entire
architectural state of the CPU when starting a transaction, whereas
ASF checkpoints only the PC and stack pointer. Rock and ASF
also forbid certain operations, possibly including floating-point op-
erations, compare and swap, or TLB miss handlers. These points
are immaterial to this paper.

In the absence of non-transactional stores, the correctness of
code that uses BEHTM is easy to verify, due to a simple guarantee
by the hardware: any violation of the BEHTM rules (e.g., capacity,
TLB misses, unsupported instructions, etc) causes the transaction
to abort and return a status code that can be used to resolve the
problem (e.g., by manually filling the TLB or switching to soft-
ware mode). Conflicting memory accesses (e.g., transactional or
non-transactional operations by another thread) also cause aborts.
Because BEHTM does not support escape actions [45], all aborts
should be thought of as occurring “immediately;” put another way,
an abort cannot be temporarily suppressed.

Non-transactional stores create many complications. First, be-
cause conflict detection occurs at cache-line granularity, the pro-
grammer must ensure that a line is not accessed both transaction-
ally and non-transactionally; these accesses can cause immediate
program termination. Second, if non-transactional stores are used
to acquire and release locks in non-transactional code called from
a transactional context, then the immediacy of aborts makes possi-
ble that a transaction will acquire a lock and then abort, rendering
the lock permanently unavailable. Last, correct ordering of non-
transactional stores relative to transactional and non-transactional
loads may require the use of memory fences in some circumstances.

3 Extending BEHTM for Verifiable
Communication

We now define methods and structures that can be used for com-
munication involving BEHTM transactions, and then discuss an
implementation using ASF’s non-transactional stores. Note that
while arbitrarily complex mechanisms can be built atop ASF’s non-
transactional load/store abilities, we limit our presentation to a sim-
ple design (a single bidirectional one-word communication channel
per CPU core) that we believe could easily be added to Rock or
TSX. We have not yet identified a situation in which this simple
design sacrifices generality, though high performance implementa-
tions may wish to make more aggressive use of ASF’s rich support
for nontransactional accesses.

We define TxChannel as an unbuffered, bidirectional commu-
nication medium with exactly two endpoints. Communication is
asynchronous and polling-based. The contents of TxChannel

consist of a fixed-size message (e.g., one memory word), which can
be atomically read from either endpoint via the LdTxChannel
method. Similarly, either endpoint can atomically overwrite the
contents of TxChannel via the StTxChannel method.3

The ConfigTxChannel method binds a thread to a channel
and returns a handle to the channel. We further constrain the Tx-
Channel mechanism as follows: when thread T is executing a
BEHTM transaction, it may not have more than one channel as-
signed to it, and it can neither bind to a channel, nor release its bind-
ing to a channel. Channel assignments are immutable for the du-
ration of a transaction. Outside of a BEHTM transaction, a thread
can change its channel configurations, and can communicate on
multiple channels.

In the ASF specification, non-transactional loads and stores per-
formed by a BEHTM transaction occur immediately, and do not
incur transactional bookkeeping. The simplest implementation of
TxChannel in ASF requires no hardware modifications: each
TxChannel is simply a reserved memory region, LdTxChannel
is a non-transactional load, and StTxChannel is a non-trans-
actional store.For channels aligned on 8-byte boundaries, these loads
and stores are naturally atomic using existing instructions in the x86
ISA. At application start, a pool of channels is created by allocat-
ing sufficient memory. ConfigTxChannel assigns an endpoint
from this pool to its caller.

In ASF, no extra hardware is required for this TxChannel im-
plementation. However, the overall correctness requires run-time
software support. There are two main challenges. First, we must
guarantee that endpoints are used correctly. Software must enforce
the binding of a single thread to each channel endpoint (one ap-
proach can be found in the Singularity OS [19]). Second, the run-
time system must ensure that a BEHTM transaction does not trans-
actionally access the line on which its TxChannel is stored. This
can be guaranteed by padding each channel to a cache line, and
aligning the channel on a cache line boundary. To prevent false
sharing, padding should take into consideration the size of L2 (and
L3) cache lines, and whether the L2 prefetch unit always requests
adjacent lines. In the worst case, modern machines might require
each TxChannel to pad to four lines (256 bytes).

For well-structured communications, the atomicity of LdTx-
Channel and StTxChannel can be relaxed to enable larger
channel sizes. Consider a 64-byte (8-word) channel. If one word
is reserved as a status field, then a message can be sent by using
non-transactional stores to set the other seven words of the channel.
Then the message can be marked ready by setting the status field
via an eighth non-transactional store. For its part, LdTxChannel
would begin by (non-transactionally) spinning on the status word,
and would not read the remainder of the channel until the status
word is set appropriately. As long as one endpoint cannot perform
consecutive StTxChannel instructions without intervening ac-
knowledgments, the illusion of atomicity is preserved.4

4 Delegation
By convention, a BEHTM transaction is connected to at most one
TxChannel. While transactions could communicate directly, we
propose that the most hardware-agnostic mechanism involves the
use of a distinguished software thread (DT). In our system, DT
serves as the remote endpoint for every transaction. The resulting
topology is depicted in Figure 1. In multi-chip environments, the

3Given this definition, TxChannel can be thought of as an atomic
register shared between exactly two threads.
4On architectures with relaxed memory consistency, one fence in-
struction would be required per channel access.

DT
STM2

STM1

BEHTM3

BEHTM2

BEHTM1

1: Multiple BEHTM and STM transactions using a single service
thread DT .

idle

req
exec

in
TXTS(*) / TSOK

- / RV
REQ / -

REQ / -

2: TxChannel state transitions, with messages sent to / by DT . If
a transaction sends REQ to DT, it must send a TS on commit / abort.
TS cannot be sent while DT is processing a request (reqexec).

number of DT threads could be dynamically adjusted (e.g., to en-
sure one per chip) without requiring the hardware to support multi-
ple TxChannel interfaces, though the DT threads might need to
synchronize with each other.

4.1 Communication Between Transactions and
DT

Transactions communicate with DT via their unique TxChannels,
using the LdTxChannel and StTxChannel commands. Be-
cause remote accesses to cache lines also accessed by a BEHTM
transaction will cause it to abort, we suggest pass-by-value param-
eters whenever possible.

Assuming TxChannel is large enough to hold entire messages,
the protocol for communication between a BEHTM thread and DT
is as follows. There are two message types sent to DT : an oper-
ation request (REQ), containing an ID of the operation to be per-
formed and the required operands; and transaction status (TS), sig-
naling either abort (A) or commit (C). Communication is always
initiated by the BEHTM thread through a REQ message. DT can
send two message types: a return value packet (RV), also serving
as ack of receipt of REQ; and ack on receipt of TS(*) (TSOK). The
state machine governing the protocol is depicted in Figure 2. In
addition, the following constraints apply: (1) TS(*) cannot be sent
until after the transaction commits or aborts. (2) Before sending
RV, DT must register onAbort and onCommit handlers for the re-
quested operation. (3) Upon receipt of TS(A), DT calls all onAbort
handlers registered on the TxChannel. (4) On receipt of a TS(C),
DT calls all onCommit handlers registered on the TxChannel.

Lifting the size constraint on the exchanged messages can be ac-
complished easily by breaking send operations of larger messages
into multiple short messages (REQ/RV) with the respective ac-
knowledgment messages (REQOK/RVOK). We omit this for clar-
ity and brevity of the presentation. More detail can be found in
Appendix B.

In our description, a single DT listens to requests by all BEHTM
transactions. If all requested actions are thread-safe, it is straight-
forward to use multiple service threads within DT , or to place a
DT thread on each core. We leave this as future work.

A BEHTM thread can request execution of any instruction that
is forbidden within its context. This includes requests for DT to
perform floating-point operations, allocations, I/O and other system
calls, and arbitrary library calls. The BEHTM transaction is free to
continue executing in parallel with the service of its request by DT .

4.2 Handling Aborts During Delegation
We must expect that a BEHTM transaction B is vulnerable to abort
at any time, including during communication with DT . To prevent
races, B cannot notify DT of its abort unless it is sure that DT is
not currently writing a message to B. Thus B must always be able
to ascertain the channel state (e.g., by executing LdTxChannel).

With this guarantee, B can invoke arbitrary library code through
DT . If B aborts while the library is running OS code or holds
a lock, DT will simply complete, release locks, and send an RV.
Only then will B send TS(A), at which time the delegated opera-
tion will be undone by DT . As an example, consider allocation:
an allocated region must be returned to the heap if the transaction
fails, and a deallocation must be deferred until the transaction com-
mits [21, Ch. 5]. Bookkeeping this information in DT , and then
finalizing or undoing operations in response to a commit/abort mes-
sage, is straightforward.

4.3 Constraints
While our mechanism does not require general support for non-
transactional stores within a BEHTM transaction, it must handle
the possibility that the delegate and the BEHTM transaction share
memory. ASF and Rock both provide strong atomicity [9], thus
dangerous accesses will result in the BEHTM transaction aborting.
If the correctness of the delegate depends on it reading a value writ-
ten by the transaction, that value will not be available and arbitrary
faults can ensue. Our prohibition on passing parameters by refer-
ence resolves this problem, and should not be a burden for the types
of syscalls and library calls we aim to support.

A second concern is that polling for acks can lead to code that
is difficult to analyze statically. While an adversary could easily
create such code, we expect well-written code to encapsulate such
control flow in objects that generate a few easily-recognizable in-
struction sequence patterns.

4.4 Overhead
When our mechanism is not used, a transaction must perform a
single LdTxChannel on commit or abort. The call will return
TSOK, indicating an idle channel (i.e., the transaction did not use
the channel and need not send TS(*)). When delegation is used,
overhead can be approximated by the number of round-trip cache
communications that occur, with all but the last occurring before
the transaction commits. This overhead can be reduced in two
ways: First, when the delegate has no return value, polling for RV
can be delayed until after the transaction commits. Second, in ASF
it is technically possible to create parameter and return value pack-
ets for large messages in memory, and to transfer their ownership
by passing pointers. While this technique obviates REQOK and
RVOK messages, we do not recommend it: it is difficult to ver-
ify, requires strong store-store ordering, and would require a long-
term commitment to broad hardware support for immediate non-
transactional stores.

In practice, other sources of latency will arise. One example is
the time to service the request and the time taken for DT to receive
the request. If this delay is too great, it is possible to partition the

transactions and employ multiple delegation threads.5 Another is
the overhead of commit and abort handlers. This cost is likely to
be application-specific, though existing experience with allocation
suggests that commit handlers should be inexpensive (e.g., reset-
ting a log) in the common case.

5 Nesting
Our delegation mechanism is essentially an open-nested transac-
tion, in which the parent uses BEHTM, and the child may or may
not. It is further constrained in that the parent and child are as-
sumed to share no memory. We now show how DT can serve as a
transaction manager, enabling many interesting patterns of parallel
nested child transactions.

Our goal is for a parent transaction to request that DT launches
many child transactions on its behalf, and that children run in paral-
lel. We assume an underlying TM similar to Hybrid NOrec [16,39]:
STM and BEHTM transactions run concurrently, using the values
stored in memory to detect conflicts. A single lock ensures atomic-
ity when STM transactions commit, and BEHTM transactions in-
cur extra overhead to commit when there are active STM transac-
tions. STM transactions do not update memory until commit time.
This contrasts with most nested STM proposals, which rely on in-
place update [1, 5, 36, 43] to avoid overhead. However, in-place
update appears incompatible with strong language-level memory
consistency models [30].

We analyze both both open and closed nesting, to see how BE-
HTM can be used in the parent and/or child transactions. We re-
strict our study to the case when a parent does not make progress
while any children are running [35]. This assumption is common
in prior explorations of nested parallel children, and removing this
prohibition does not substantially affect our findings. Similarly, we
do not consider deep nesting: the capacity limits of BEHTM make
it unlikely that deep nesting would be practical.

We extend DT from the prior section to support nesting in a
manner similar to the closed-nested transaction coordinator used
by Ramadan et al. [38]. In that work, a transaction communicates
with the manager to request that child transactions be assigned to
idle threads, and then the children coordinate through the manager
to commit “into” the parent. In Ramadan’s work, children often
would commit together, and thus DT would coordinate commit or
unwind of children. We extend this system with support for both
open nesting and BEHTM. We also add support for sandboxing
child operations (the need for which is discussed below), and ex-
pose multiple mechanisms for merging child results into the parent.
These mechanisms balance capacity constraints of a BEHTM trans-
action with run-time overhead and generality imposed by sharing
constraints.

5.1 Sharing Data Between a Parent and its
Nested Child

Most nested STM systems employ Agrawal et al.’s definition of
conflicting transactions [1]. The definition permits maximal shar-
ing among a parent and its children: a child transaction never con-
flicts with its parent, even if it reads or writes locations that its par-
ent has accessed. This definition even holds when an open-nested
transaction modifies a location its parent has also modified. Imple-
mentations that allow maximal sharing are necessarily complex [5].

At a high level, our system works by having parent transactions
request that DT launch child transactions, and then relying on DT

5Note that concentrating certain operations on a single thread (e.g.,
system calls [12] or allocation [42]) may offer greater benefit than
multiple DT threads.

ASA RSO SFF
x ∈ Cread ⇒ x /∈ Pread

S
Pwrite x ∈ Cread ⇒ x /∈ Pwrite x ∈ Cread ⇒ x /∈ Pwrite

x ∈ Cwrite ⇒ x /∈ Pread

S
Pwrite x ∈ Cwrite ⇒ x /∈ Pread

S
Pwrite

3: Rules governing overlap between child (C) and parent (P) memory accesses.

to mediate the commit of those children. The parent-child relation-
ship is invisible to the BEHTM hardware. Because BEHTM inter-
prets any cache-level conflict as a cause for abort, we are unable to
support the maximal model.

In more detail, suppose BEHTM transaction P has read location
X and then requested that DT execute a nested child C. The cache
line containing X will be tracked by the processor executing P ,
and thus if C fetches the cache line containing X into a writable
state, the line will be evicted from P ’s processor’s cache and P will
abort. A similar condition occurs if P writes X and C attempts to
read X . Consequently, we consider three weaker communication
patterns for parents and children, shown in Figure 3:
• Access set augmenting (ASA): C is an ASA child of P if it

does not access any cache line also accessed by P .
• Read share only (RSO): C is an RSO child of P if all over-

lapping accesses are reads by P and C.
• Store forward forbidding (SFF): C is an SFF child of P

if it does not read a location written by P . C may write to
locations read or written by P , and may read locations read
by P .

5.2 Sandboxing
If C reads a location X written by its BEHTM parent P , P will
abort and C will continue running, using the value of X that existed
prior to P ’s write. This can lead to erroneous behavior: Suppose
P writes X = |X|, and C computes

√
X . The programmer is

likely to assume that X ≥ 0 holds when C begins, and thus if
the underlying TM run-time executing C is opaque [22], C should
never fault. If P uses BEHTM, C’s read will abort P and return
the value of X from before P began; thus, C can execute with an
inconsistent view of memory in which X < 0.

To address this problem, the TM runtime must ensure that C’s
inconsistent view of memory does not cause it to produce a visi-
ble fault, enter an infinite loop, execute a computed jump to non-
transactional code, or corrupt the heap. If it cannot be statically
proven that C does not read P ’s writes, the child must coordinate
with DT to achieve a degree of run-time sandboxing: before any
potentially unsafe operation, the child must query DT to check if
P is still live. To prove P live, DT must communicate with P ;
it cannot simply read P ’s status, because P may be in its abort
handler.

Our solution uses two new message types, CHKSTATE and
LIVE. After a parent P sends REQ to invoke a set of child trans-
actions, it executes a spin loop in which it reads from its channel,
awaiting an RV or CHKSTATE message. As before, RV indicates
that the child operations are complete, and P can resume. When
CHKSTATE is received, P immediately sends LIVE. If P aborts, it
must wait for a CHKSTATE or RV message, and then send TS(A).
Failing to wait could result in its message racing with DT ’s next
CHKSTATE or RV message.

The details of when sandboxing is needed have been explored
elsewhere [40, 41]. Our contribution is discovering that sandbox-
ing is needed even for an opaque TM if a child C of a BEHTM
parent P can cause P to abort. Beyond the concerns raised in past
work, we must ensure that if C computes an address and writes to it,
the address computation was not based on inconsistent reads. This

requirement is outside of the sandboxing that BEHTM guarantees
(i.e., that faults within a transaction cause it to abort), so a software
child using in-place update must ensure its parent is live before it
writes to a location that might not be protected by the TM. Other-
wise, a subsequent undo action might participate in a data race. For
the same reason, open-nested children (BEHTM and STM) must
ensure their parents are live before committing. Sandboxing is also
needed for some non-transactional stores performed by a BEHTM
child (e.g., those that are not to the current stack frame) and by
STM parents of closed-nested BEHTM children.

5.3 Findings
We now present our findings for all combinations of open and closed
nesting, and BEHTM and STM transactions, in which at least one
transaction uses BEHTM. A summary appears in Figure 4.

Open-nested BEHTM Child of BEHTM Parent: In our model,
a BEHTM parent can have an unlimited number of open-nested
BEHTM children. However, because the BEHTM parent cannot
forward its speculative stores, these children must obey the ASA or
RSO models.6

The algorithm is simple: P sends a REQ message to DT to
request that the children run, and then DT assigns work to threads
in its private pool. These threads’ transactions communicate with
DT via the TxChannel mechanism. Because P uses BEHTM,
if child C attempts to read any location P has written, or to write
any location P has read, P will abort. C will continue to run, but
because it uses BEHTM, its effects are guarded until the commit
point. Because an open-nested child C commits before its parent
P , rather than atomically with P , child commit is straightforward:
DT uses CHKSTATE to ensure that P is live, and then allows C to
commit according to the Hybrid NOrec protocol. This is sufficient
for correctness: because C is at its commit point, if P has not
aborted, C’s accesses must have been ASA or RSO. Should C abort
at any time, DT restarts it only if P is still live. When C commits,
it sends an RV to DT . The RV message includes the commit and
abort handlers that must run when P completes, as well as any
values to return to P . Because each open-nested child commits or
aborts independently, no coordination is needed among children.

Open-nested STM Child of BEHTM Parent: An open-nested
software child of a BEHTM parent runs in almost the same man-
ner as just described. However, because BEHTM is not used in
the child, it must sandbox more operations. Again, any number of
children are possible, and these children must be ASA or RSO.

There is one additional restriction: because STM transactions in
Hybrid NOrec use buffered writes, writes by C to locations read
by P do not cause P to abort during C’s execution. Instead, they
cause P to abort during C’s “redo” phase, after C has committed,
which can lead to erroneous output. To prevent this, whenever C
adds a location L to its write set, we require it to execute a write
prefetch with L as the operand. If P has read L, the prefetch will
cause P to abort before C’s pre-commit check.

6In this and subsequent discussion, the parent can simulate a lim-
ited number of known child reads of parent writes by sending those
speculatively written values as parameters to the child in the initial
REQ message.

Parent BEHTM BEHTM STM BEHTM STM BEHTM
Child BEHTM STM BEHTM BEHTM BEHTM STM
Nesting Open Open Open Closed Closed Closed
Valid Access Patterns ASA/RSO ASA/RSO ASA/RSO None ASA/RSO ASA/RSO/SFF

4: Nesting and memory access patterns that can take advantage of BEHTM.

Open-nested BEHTM Child of STM Parent: In previous sec-
tions, we saw that the ability of a BEHTM parent to immediately
detect conflicts with its children due to non-ASA/RSO sharing meant
that little work was required by the parent when deciding whether
a child could commit. The only cost was for the communication to
ensure that the parent had not already aborted. When the parent is
an STM transaction, more work is needed at this point: the parent
must validate its read set and write-prefetch every location in its
write set before sending LIVE.

Read-set validation serves two ends: it ensures P is still active
(otherwise, C’s commit could be erroneous) and causes C to abort
if it has speculative writes to locations P has read. Note that valida-
tion does not cause C to abort due to read-read sharing in BEHTM.
Similarly, write prefetching causes C to abort if it read from or
stored to anything P had written. The net effect is that C can only
commit if it is ASA or RSO.

If the language memory model allowed for in-place update, then
child reads of parent writes could be forwarded to the BEHTM
child. We leave explorations of this topic as future work.

Closed-nested BEHTM Child of BEHTM Parent: We are aware
of two mechanisms for committing a closed-nested child. In STM,
the more common approach is for C to merge its read and write
sets into P . The other, which resembles distributed transactions,
is for C to wait for P to reach its commit point, and then employ
some protocol by which the two commit or abort together.

When a closed-nested child uses BEHTM, there is no software-
accessible structure through which the child can communicate its
accesses to its parent. Thus the first mechanism cannot be em-
ployed. In current BEHTM systems, the second approach cannot
be achieved either. Thus a BEHTM parent cannot have a closed-
nested BEHTM child.

To understand why the second approach cannot work, we show
that it is impossible in current BEHTM systems to achieve a coordi-
nated commit of two transactions. Recall that in BEHTM, a trans-
action executes a commit instruction to make all its effects visible
(i.e., a one-phase commit protocol). Prior to issuing this command,
the transaction is vulnerable to aborts (e.g., due to memory con-
flicts or context switches). After issuing the command, the trans-
action’s updates are visible to other threads. Suppose we wish for
BEHTM transactions A and B to commit as a single atomic event.
By definition, A commits exactly when it executes its commit in-
struction. The same is true of B. If while A is issuing commit, B
experiences a context switch, then A will commit while B aborts.
A symmetric case covers B issuing commit before A. Even in
the absence of additional threads, atomic group commit of two (or
more) BEHTM transactions is not possible.

Closed-nested BEHTM Child of STM Parent: There is a slight
difference between this and the prior pattern. The child BEHTM
transaction still cannot communicate its read and write sets to the
parent. However, a single closed-nested BEHTM child can commit
atomically with its software parent, and thus this pattern can be
supported in a limited sense.

Suppose that STM parent P invokes the closed-nested child C at
the end of P ’s execution. In this case, once C finishes its compu-

tation, both it and P can commit. Our solution is for C to send its
RV to DT , who then instructs P to “pre-commit.” Once P com-
pletes this step, DT informs C to commit. If C succeeds, then
P is instructed to finalize its commit. Otherwise, P aborts. Note
that closed-nested STM children could also be involved in the com-
mit; they would simply “commit into” P prior to the coordination
between P and its BEHTM child.

Using Hybrid NOrec as an example, P ’s pre-commit consists of
(a) acquiring the global commit lock, (b) validating its read set, and
(c) write-prefetching all elements of the write set. These steps en-
sure that no other transaction will invalidate P , that P is valid, and
that C will abort if it performed non-ASA/RSO accesses. Note,
too, that C need not be the last step in P ’s computation. In that
case, the ultimate commit follows the same protocol as already de-
scribed. When C returns control to P , C has not committed and
P must perform the write prefetch and validate steps (but not ac-
quire the global lock), and then determine (through DT) that C
is still live before continuing. Furthermore, P must be sandboxed
from this point forward, so that any attempt to use a location writ-
ten by C will not result in a fault. Sandboxing in this case entails
P querying C to ensure C has not aborted because an abort by C
could signify that P attempted to read one of C’s writes.

Closed-nested STM Child of BEHTM Parent: The final pattern
we consider is when P uses BEHTM but C does not. Naturally, C
cannot read P ’s writes. All other sharing patterns are allowed, and
thus ASA, RSO, and SFF children are possible.

Because the child is an STM transaction, it has precise logs of the
address/value pairs it read and the address/value pairs it intends to
write. Note that C does not perform write-prefetching. To commit,
C simply passes all of this information to P in the RV message.
Before P continues, it validates C’s reads by checking that each
address it received still holds the value that was sent. These checks
use transactional reads, and thus merge C’s reads into P ’s read
set. P then re-executes C’s writes using transactional stores, to
add them to its write set.

There are three caveats. First, C must be sandboxed so attempts
to read P ’s writes do not lead to erroneous behavior. Second, while
writes to locations read or written by P are possible, overwrites of
P ’s writes are not likely to succeed in practice because most writes
are preceded by a read to the same location. Third, and most im-
portant, the size of C’s read and write sets cannot be so large as to
overflow the BEHTM capacity constraints imposed on P . Other-
wise P will ultimately abort. While it is possible to communicate
only C’s writes in RV, and then require DT to validate C’s reads
before P commits, the resulting constraints on the behavior of P
limit the technique’s usefulness.

5.4 Relationship to Delegation
Delegation and nesting serve fundamentally different roles. Dele-
gation addresses the use of orthogonal components that are forbid-
den within a BEHTM context, whereas nesting is a more general
approach to achieving parallelism. Thus with delegation we as-
sume that each delegate effectively operates on a private region of
the heap, and there is no sharing between a delegate and the invok-
ing transaction (though in reality there will be false conflicts, such

as those arising when the allocator traverses metadata stored in the
header of allocated objects). Because a parent abort cannot affect
the delegate, delegation does not introduce the need for sandbox-
ing, whereas nesting does.

The models also differ with respect to parallelism. With nesting,
the parent does not execute in parallel with its children, because
doing so can increase the likelihood of conflicts (particularly given
BEHTM “attacker wins” conflict resolution). In contrast, delega-
tion is naturally parallel, because delegate and transaction accesses
are assumed to be disjoint.

In addition, we require nesting to employ the same transactional
runtime as the parent, whereas delegate actions need not, and so a
delegate could use locks, STM, or lock-free programming (perhaps
assisted by ASF). The cost of this flexibility is that interactions with
a delegate are pass-by-value.

6 Related Work
In the earliest (non-parallel) nested STM [36], several of the cases
that BEHTM cannot handle were also problematic. The authors
claimed that a child overwriting a parent’s read should be rare in
practice, which mitigates our inability to support the pattern in BE-
HTM. They also identified a child overwriting a parent’s write as
challenging. We can only support this pattern with closed-nested
STM children, and our solution resembles theirs. Lastly, that work
identified programming pitfalls such as deadlock in abort handlers;
we expect their proposed solutions to apply to our work.

NePaLTM [43] used a mutex to run child transactions serially.
Later, Barreto et al. implemented Agrawal’s algorithm [5]. Since
they used in-place update, their system was not compatible with
strong language-level memory models. However, it supported more
patterns of sharing than we can achieve when using BEHTM. They
found that the time required to propagate updates to a parent in-
creased the likelihood of false conflicts. This is likely to affect our
closed-nested STM child transactions. Baek et al. implemented the
first closed-nested STM (NeSTM) with buffered update [3]. Their
implementation would experience “zombie” transactions in some
cases. Our discovery of the need for sandboxing explains and pre-
vents zombies.

Coordinated sibling transactions (CST) [38] are a closed-nested
system supporting complex patterns of group commit for child trans-
actions. Our use of a DT thread resembles CST’s use of a master
transaction coordinator to manage thread pools. We believe that our
system could be used to implement the CST coordination patterns,
with the caveats that a BEHTM parent can have only software CST
children, a software parent can have at most one BEHTM child,
and children must obey the access rules in Section 5.

Hardware Implementations of Nesting: Escape actions are a
means of deferring aborts in HTM, which enable simple delegation
operations such as time-related syscalls [45]. Moravan et al. [34]
extended LogTM with (non-parallel) open-nested transactions, and
FaNTM [4] accelerated NeSTM via hardware signatures. These
techniques all required modifications to the pipeline or coherence
protocol. FaNTM is also prone to complex deadlocks and live-
locks as a result of partial rollback. Our use of livelock-free Hybrid
NOrec avoids such problems.

Beyond Nesting: Our system can support many other patterns of
communication, such as safe futures [44] and CST. Another promis-
ing direction is to implement communicators [28, 29], though the
requirement that all participants in a communicator commit to-
gether necessitates that the communicator dynamically limits to
one the number of BEHTM transactions bound to it.

7 Conclusions
This paper presented a system that supports delegation and nest-
ing in best-effort hardware transactional memory. Our design is
in keeping with the spirit of BEHTM, in that it requires minimal
changes to existing hardware; in fact, the AMD ASF proposal re-
quires no further extensions to implement our abstract communi-
cation channel, and we believe that a minimal implementation of
our communication abstraction in the Rock prototype processor or
forthcoming TSX platform would be straightforward.

Our system allows BEHTM transactions to invoke delegates to
perform non-transactional actions on their behalf, such as system
and library calls. As necessary, the transaction can register han-
dlers to unwind or finalize the behavior of delegates on transaction
commit or abort. We employ a dedicated helper thread to manage
the relationship between a transaction and its delegates; ultimately,
we showed that the mechanism can generalize to support open and
closed-nested parallel transactions. While delegation prevents fall-
back to software mode for simple operations, such as time-related
system calls and allocation, nesting allows for enhanced parallelism
in workloads in which top-level transactions conflict with high fre-
quency, but each possesses a significant amount of internal paral-
lelism. Unfortunately, the promise of nested parallelism is tem-
pered by the limitations we discovered, which appear to be intrin-
sic to BEHTM. When these limitations are encountered, the system
will need to fall back to a pure software mode of execution.

We leave as future work a thorough performance evaluation of
nesting in BEHTM because it requires more precise simulation sup-
port than is currently available. We are also investigating whether
minimal hardware modifications could enable group commit, de-
crease the cost of sandboxing, or enable simple data forwarding
among transactions. A further area of exploration relates to the per-
formance tradeoff of supporting multiple TxChannels per trans-
action, or multiple DT threads.

8 References

[1] Kunal Agrawal, Jeremy Fineman, and Jim Sukha. Nested Parallelism
in Transactional Memory. In Proceedings of the 13th ACM
Symposium on Principles and Practice of Parallel Programming, Salt
Lake City, Utah, February 2008.

[2] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E.
Leiserson, and Sean Lie. Unbounded Transactional Memory. In
Proceedings of the 11th International Symposium on
High-Performance Computer Architecture, February 2005.

[3] Woongki Baek, Nathan Bronson, Christos Kozyrakis, and Kunle
Olukotun. Implementing and Evaluating Nested Parallel Transactions
in Software Transactional Memory. In Proceedings of the 22nd ACM
Symposium on Parallelism in Algorithms and Architectures,
Santorini, Greece, June 2010.

[4] Woongki Baek, Nathan Bronson, Christos Kozyrakis, and Kunle
Olukotun. Making Nested Parallel Transactions Practical using
Lightweight Hardware Support . In Proceedings of the 24th ACM
International Conference on Supercomputing, Tsukuba, Japan, June
2010.

[5] Joao Barreto, Aleksandar Dragojevic, Paulo Ferreira, Rachid
Guerraoui, and Michal Kapalka. Leveraging Parallel Nesting in
Transactional Memory. In Proceedings of the 15th ACM Symposium
on Principles and Practice of Parallel Programming, Bangalore,
India, January 2010.

[6] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim
Harris, Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian
Schupbach, and Akhilesh Singhania. The Multikernel: A New OS
Architecture for Scalable Multicore Systems. In Proceedings of the
22nd ACM Symposium on Operating Systems Principles, Big Sky,
Mont., October 2009.

[7] Emery Berger, Kathryn McKinley, Robert Blumofe, and Paul
Wilson. Hoard: A Scalable Memory Allocator for Multithreaded
Applications. In Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Operating
Systems, Cambridge, Mass., November 2000.

[8] Colin Blundell, Joe Devietti, E Christopher Lewis, and Milo Martin.
Making the Fast Case Common and the Uncommon Case Simple in
Unbounded Transactional Memory. In Proceedings of the 34th
International Symposium on Computer Architecture, San Diego,
Calif., June 2007.

[9] Colin Blundell, E Christopher Lewis, and Milo M. K. Martin.
Subtleties of Transactional Memory Atomicity Semantics. Computer
Architecture Letters, 5(2), November 2006.

[10] Jayaram Bobba, Kevin Moore, Haris Volos, Luke Yen, Mark Hill,
Michael Swift, and David Wood. Performance Pathologies in
Hardware Transactional Memory. In Proceedings of the 34th
International Symposium on Computer Architecture, San Diego,
Calif., June 2007.

[11] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao,
M. Frans Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein,
Ming Wu, Yue hua Dai, Yang Zhang, and Zheng Zhang. Corey: An
operating system for many cores. In Proceedings of the 8th USENIX
Symposium on Operating Systems Design and Implementation, San
Diego, Calif., December 2008.

[12] Silas Boyd-Wickizer, Austin Clements, Yandong Mao, Aleksey
Pesterev, M. Frans Kaashoek, Robert Morris, and Nickolai
Zeldovich. An Analysis of Linux Scalability to Many Cores. In
Proceedings of the 9th USENIX Symposium on Operating Systems
Design and Implementation, Vancouver, B.C., Canada, October 2010.

[13] Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin
Karlsson, Anders Landin, and Sherman Yip. Rock: A
High-Performance Sparc CMT Processor. IEEE Micro, 29(2):6–16,
March–April 2009.

[14] Dave Christie, Jae-Woong Chung, Stephan Diestelhorst, Michael
Hohmuth, Martin Pohlack, Christof Fetzer, Martin Nowack, Torvald
Riegel, Pascal Felber, Patrick Marlier, and Etienne Riviere.
Evaluation of AMD’s Advanced Synchronization Facility within a
Complete Transactional Memory Stack. In Proceedings of the
EuroSys2010 Conference, Paris, France, April 2010.

[15] Jaewoong Chung, Luke Yen, Stephan Diestelhorst, Martin Pohlack,
Michael Hohmuth, Dan Grossman, and David Christie. ASF:
AMD64 Extension for Lock-free Data Structures and Transactional
Memory. In Proceedings of the 43rd IEEE/ACM International
Symposium on Microarchitecture, Atlanta, Ga., December 2010.

[16] Luke Dalessandro, Francois Carouge, Sean White, Yossi Lev, Mark
Moir, Michael Scott, and Michael Spear. Hybrid NOrec: A Case
Study in the Effectiveness of Best Effort Hardware Transactional
Memory. In Proceedings of the 16th International Conference on
Architectural Support for Programming Languages and Operating
Systems, Newport Beach, Calif., March 2011.

[17] Dave Dice, Yossi Lev, Virendra Marathe, Mark Moir, Marek
Olszewski, and Dan Nussbaum. Simplifying Concurrent Algorithms
by Exploiting Hardware TM. In Proceedings of the 22nd ACM
Symposium on Parallelism in Algorithms and Architectures,
Santorini, Greece, June 2010.

[18] David Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Early
Experience with a Commercial Hardware Transactional Memory
Implementation. In Proceedings of the 14th International Conference
on Architectural Support for Programming Languages and
Operating Systems, Washington, D.C., March 2009.

[19] Manuel Fahndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson,
Galen Hunt, James Larus, and Steven Levi. Language Support for
Fast and Reliable Message-based Communication in Singularity OS.
In Proceedings of the EuroSys2006 Conference, Leuven, Belgium,
April 2006.

[20] Francois Carouge and Michael Spear. A Scalable Lock-Free
Universal Construction with Best Effort Transactional Hardware. In
Proceedings of the 24th International Symposium on Distributed
Computing, Cambridge, Mass., September 2010.

[21] Keir Fraser. Practical Lock-Freedom. PhD thesis, King’s College,
University of Cambridge, September 2003.

[22] Rachid Guerraoui and Michal Kapalka. On the Correctness of
Transactional Memory. In Proceedings of the 13th ACM Symposium
on Principles and Practice of Parallel Programming, Salt Lake City,
Utah, February 2008.

[23] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom,
John D. Davis, Ben Hertzberg, Manohar K. Prabju, Honggo Wijaya,
Christos Kozyrakis, and Kunle Olukotun. Transactional Memory
Coherence and Consistency. In Proceedings of the 31st International
Symposium on Computer Architecture, Munich, Germany, June 2004.

[24] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory,
2nd edition. Synthesis Lectures on Computer Architecture. Morgan
& Claypool, 2010.

[25] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat
Combining and the Synchronization-Parallelism Tradeoff. In
Proceedings of the 22nd ACM Symposium on Parallelism in
Algorithms and Architectures, Santorini, Greece, June 2010.

[26] Richard L. Hudson, Bratin Saha, Ali-Reza Adl-Tabatabai, and
Benjamin Hertzberg. A Scalable Transactional Memory Allocator. In
Proceedings of the International Symposium on Memory
Management, Ottawa, Ont., Canada, June 2006.

[27] Intel Corp. Intel Architecture Instruction Set Extensions
Programming Reference, 319433-012a edition, February 2012.

[28] Mohsen Lesani and Jens Palsberg. Communicating Memory
Transactions. In Proceedings of the 16th ACM Symposium on
Principles and Practice of Parallel Programming, San Antonio, Tex.,
February 2011.

[29] Victor Luchangco and Virendra Marathe. Transaction
Communicators: Enabling Cooperation Among Concurrent
Transactions. In Proceedings of the 16th ACM Symposium on
Principles and Practice of Parallel Programming, San Antonio, Tex.,
February 2011.

[30] Vijay Menon, Steven Balensiefer, Tatiana Shpeisman, Ali-Reza
Adl-Tabatabai, Richard Hudson, Bratin Saha, and Adam Welc.
Practical Weak-Atomicity Semantics for Java STM. In Proceedings
of the 20th ACM Symposium on Parallelism in Algorithms and
Architectures, Munich, Germany, June 2008.

[31] Maged M. Michael. Scalable Lock-Free Dynamic Memory
Allocation. In Proceedings of the 25th ACM Conference on
Programming Language Design and Implementation, Washington,
D.C., June 2004.

[32] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen
McDonald, Nathan Bronson, Jared Casper, Christos Kozyrakis, and
Kunle Olukotun. An Effective Hybrid Transactional Memory System
with Strong Isolation Guarantees. In Proceedings of the 34th
International Symposium on Computer Architecture, San Diego,
Calif., June 2007.

[33] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill,
and David A. Wood. LogTM: Log-based Transactional Memory. In
Proceedings of the 12th International Symposium on
High-Performance Computer Architecture, February 2006.

[34] Michelle Moravan, Jayaram Bobba, Kevin Moore, Luke Yen, Mark
Hill, Ben Liblit, Michael Swift, and David Wood. Supporting Nested
Transactional Memory in LogTM. In Proceedings of the 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems, San Jose, Calif., October 2006.

[35] Eliot Moss and Antony L. Hosking. Nested Transactional Memory:
Model and Preliminary Architecture Sketches. In Proceedings of the
Workshop on Synchronization and Concurrency in Object-Oriented
Languages, San Diego, Calif., October 2005.

[36] Yang Ni, Vijay Menon, Ali-Reza Adl-Tabatabai, Antony Hosking,
Rick Hudson, Eliot Moss, Bratin Saha, and Tatiana Shpeisman. Open
Nesting in Software Transactional Memory. In Proceedings of the
12th ACM Symposium on Principles and Practice of Parallel
Programming, San Jose, Calif., March 2007.

[37] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing
Transactional Memory. In Proceedings of the 32nd International
Symposium on Computer Architecture, Madison, Wis., June 2005.

[38] Hany Ramadan and Emmett Witchel. The Xfork in the Road to
Coordinated Sibling Transactions. In Proceedings of the 4th ACM
SIGPLAN Workshop on Transactional Computing, Raleigh, N.C.,
February 2009.

[39] Torvald Riegel, Patrick Marlier, Martin Nowack, Pascal Felber, and
Christof Fetzer. Optimizing Hybrid Transactional Memory: The
Importance of Nonspeculative Operations. In Proceedings of the 23rd
ACM Symposium on Parallelism in Algorithms and Architectures,
June 2011.

[40] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao
Minh, and Benjamin Hertzberg. McRT-STM: A High Performance
Software Transactional Memory System For A Multi-Core Runtime.
In Proceedings of the 11th ACM Symposium on Principles and
Practice of Parallel Programming, New York, N.Y., March 2006.

[41] Michael F. Spear, Maged M. Michael, Michael L. Scott, and Peng
Wu. Reducing Memory Ordering Overheads in Software
Transactional Memory. In Proceedings of the 2009 International
Symposium on Code Generation and Optimization, Seattle, Wash.,
March 2009.

[42] Devesh Tiwari, Sanghoon Lee, James Tuck, and Yan Solihin. MMT:
Exploiting Fine-Grained Parallelism in Dynamic Memory
Management. In Proceedings of the 24th International Parallel and
Distributed Processing Symposium, Atlanta, Ga., April 2010.

[43] Haris Volos, Adam Welc, Ali-Reza Adl-Tabatabai, Tatiana
Shpeisman, Xinmin Tian, and Ravi Narayanaswamy. NePalTM:
Design and Implementation of Nested Parallelism for Transactional
Memory Systems. In 23rd European Conference on Object-Oriented
Programming, Genova, Italy, July 2009.

[44] Adam Welc, Suresh Jagannathan, and Antony Hosking. Safe Futures
for Java. In Proceedings of the 20th ACM Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, San Diego, Calif., October 2005.

[45] Craig Zilles and Lee Baugh. Extending Hardware Transactional
Memory to Support Non-Busy Waiting and Non-Transactional
Actions. In Proceedings of the 1st ACM SIGPLAN Workshop on
Languages, Compilers, and Hardware Support for Transactional
Computing, Ottawa, Ont., Canada, June 2006.

A Use Case: Memory Allocation
TM makes it easy to express concurrent algorithms that operate on
dynamic data structures. However, it is crucial that the allocation
and reclamation of memory used to implement the data structure is
handled correctly. While data structure microbenchmarks avoid the
need to allocate from within a transaction by pre-allocating a single
node before performing an insertion transaction, and by buffering
a single deallocation in a removal transaction until the transaction
commits, real code is not afforded this luxury. Once transactions
are composed, it becomes impossible to predict the number and
size of allocations, or the number of deallocations.

Most STM run-times provide a safe allocator interface [26] in
which a transaction suspends when an allocation is requested, the
allocator is invoked, and the transaction logs the result so the cor-
responding memory can be freed if the transaction aborts. These
allocators also defer all deallocation until the transaction commits.
This approach is not possible for BEHTM for several reasons. A
rather trivial point is that the logging operations consume limited
resources that should be used to write program data. More signif-
icantly, most allocators have some form of synchronization (e.g.,
locks). If the BEHTM transaction accesses this lock transaction-
ally, it inherits a contention hotspot with all other allocations; if
it accesses the lock non-transactionally, it risks aborting before re-
leasing the lock, causing a deadlock. In addition, memory leaks
are possible if the transaction aborts after allocating memory but
before logging it. Finally, modern allocators [7,31] typically main-
tain a local heap that, if depleted, must be expanded by invoking
the OS. Such an instruction would cause the BEHTM transaction
to immediately abort, because context switches are unsupported.7

7This is a context switch in the broader sense: a change of the
scope and privilege level of execution–not necessarily a switch to a
different user-space application.

Even code that might perform such operations is not safe to call,
and thus such simple operations as allocating or freeing memory
usually require transactions to transition into software mode. Even
if these operations were transaction-safe without locks, they would
likely introduce aborts due to meta-data contention. A variety of
approaches to reducing contention, varying from one-off solutions
for allocation [42] and syscalls [11] to general lock-aggregating
techniques like flat combining [25], all support the notion that ag-
gregating certain computations on a single thread can effectively
reduce latency by replacing meta-data contention and syscall over-
head with the cost of a single round-trip communication.

A.1 Delegated Memory Allocation
These constraints on allocation within BEHTM transactions make
it an ideal candidate for the delegation mechanism outlined in Sec-
tion 4. The simplest implementation will begin with BEHTM trans-
action T sending an allocation request to DT , consisting of an
identifier for the malloc operation and a size parameter. DT then
performs the allocation, registers a corresponding undo action, and
returns the obtained pointer through the channel. After making the
request, T simply polls for a return value, using non-transactional
loads. When T commits, it sends a message to DT indicating that
the undo action can be unregistered; when T aborts, it informs DT
that the undo action must be performed.

Deallocation can be achieved similarly: T sends a message con-
sisting of an identifier for the free operation and the pointer to
free. DT then logs the deallocation for replay at commit time, and
sends an acknowledgment. T can run in parallel with DT , but can-
not re-use the channel until it receives DT ’s (empty) response.

A.2 Performance Estimate
Delegated memory allocation incurs a communication overhead but
prevents the cost associated with abort and restart of the hardware
transaction. In addition, reduced synchronization through central-
ized execution can reduce the latency of the allocation operation.

If we ignore the gains that come from a simpler allocator design,
we can estimate the worst-case overhead. First, we consider the raw
cost of sending a message via shared memory, when the receiver is
actively polling for a message. We conducted an experiment on
a quad-core AMD PhenomTM II X4 945 Processor, running at 3.0
GHz, to measure round-trip time for communication between two
cores. Using a single cache line for transfer and polling, the round-
trip time was around 600 CPU cycles. Through careful placement
of buffers, prefetching and polite polling, we could reduce the ef-
fective round-trip time to 300 cycles. This is in line with results
from Baumann et al., where the authors report a round-trip time
of 450 cycles for on-die communication for a similar AMD sys-
tem [6]. The use of shallower cache hierarchies or write-through /
inclusive caches could reduce this latency significantly.

This evaluation ignored the possibility that a transaction might
wait while DT satisfies other requests. In general, this delay can
be ignored: Tiwari et al. showed that under high load, centralized
allocators can actually perform better, due to decreased meta-data
contention [42]; under low load, the delay is already negligible.

B Channel/Delegation Pseudocode
Listings 1 and 2 show an implementation of simple send and re-
ceive primitives for small and large messages, as discussed in Sec-
tion 3. If used from within a BEHTM transaction, these functions
use ASF non-transactional loads and stores; if used from outside,
they use plain, atomic memory accesses.

Delegating the execution of unsafe operations from within a BE-
HTM transaction to a service thread DT (Section 4) can be accom-
plished through the code in Listing 3 – while the corresponding
handler in DT is shown in Listing 4. We present only code that
handles a single, dedicated TxChannel in DT ; however, the code
remains similar if DT handles multiple TxChannels: the block-
ing receive operation would need to be replaced by a select-style
operation, and abort and commit handlers would need to be per-
channel. The BEHTM transaction would use the respective SIG-
NAL functions from Listing 3 when it aborts / commits.

If only a single-word channel were allowed, the mechanism of
Listing 2 could suffice, with the REQ and RV messages sent 63
bits at a time (31 bits at a time in 32-bit mode). While this seems
onerous, reserving a bit to identify the sender of the previous mes-
sage in the TxChannel is necessary, so that a TS(A) message is
not sent by a transaction’s abort handler while DT is sending RV.
We also note that in existing 64-bit systems, several high bits of
pointers are unused. Thus, even with single-word channels, alloca-
tion and deallocation could be performed without introducing the
need for REQOK/RVOK messages.

Listing 1 Sending and receiving small messages with ASF, using
non-transactional accesses and relying on well-formed ping-pong
communication.

procedure SENDMSGASF(src, dst, type, d[])
TxChannel[1 . . . 7]← d[0 . . . 6] . store the payload
TxChannel[0]← (src, type)

end procedure

procedure RCVMSGASF(src, dst, type, d[])
repeat

(s, type)← TxChannel[0] . spin
until s = src
d[0 . . . 6]← TxChannel[1 . . . 7]

end procedure

Listing 2 Sending long messages by chunking and acknowledging
each chunk.

procedure SENDLONGMSGASF(src, dst, type, d[])
rem← len(d)
while rem > 0 do . store operands in temporary

n← max(rem, 7)
tmp[0 . . . (n− 1)]← d[i . . . (i + n− 1)]
(rem, i)← (rem− n, i + n)
sendMsgASF (src, (type, n, rem), tmp))
rcvMsgASF (dst, t, ign) . wait for ack
assert(t = (type, OK))

end while
end procedure

procedure RCVLONGMSGASF(src, dst, type, results[])
i← 0
repeat . receive message in chunks

rcvMsgASF (src, t, d)
(type, n, rem)← t
results[i . . . (i + n− 1)]← d[0 . . . (n− 1)]
sendMsgASF (dst, (type, OK), ∅)) . ack
i← i + n

until rem = 0
end procedure

Listing 3 Delegating an operation to DT , using the primitives from
either Listing 1 or Listing 2.

procedure DELEGATESYNCTODT(id, operands[], res[])
sendMsg(TX, DT, REQ, (id, operands))
rcvMsg(DT, TX, type, res)
assert(type = RV)

end procedure

procedure SIGNALABORTTODT
sendMsg(TX, DT, TS, A)
rcvMsg(DT, TX, type, ign)
assert(type = TSOK)

end procedure

procedure SIGNALCOMMITTODT
sendMsg(TX, DT, TS, C)
rcvMsg(DT, TX, type, ign)
assert(type = TSOK)

end procedure

Listing 4 Handling delegation requests inside DT .

procedure HANDLEDELEGATION
abortHnd← ∅
commitHnd← ∅
repeat

rcvMsg(TX, DT, t, d)
if t = REQ then

(id, op)← d
if abortHandler(id) then

abortHnd←
abortHnd ∪ (abortHandler(id), op)

end if
if commitHandler(id) then

commitHnd←
commitHnd ∪ (commitHandler(id), op)

end if
res[]← handle(id, op)
sendMsg(DT, TX, RV, res)

end if
until t = TS
if d = C then

executeAll(commitHnd)
else if d = A then

executeAll(abortHnd)
end if
sendMsg(DT, TX, TSOK, ∅)

end procedure

	Introduction
	BEHTM Background
	Extending BEHTM for VerifiableCommunication

	Delegation
	Communication Between Transactions and DT
	Handling Aborts During Delegation
	Constraints
	Overhead

	Nesting
	Sharing Data Between a Parent and itsNested Child
	Sandboxing
	Findings
	Relationship to Delegation

	Related Work
	Conclusions
	References
	Use Case: Memory Allocation
	Delegated Memory Allocation
	Performance Estimate

	Channel/Delegation Pseudocode

