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Abstract—We introduce the Mindicator, a new shared
object that is optimized for querying the minimum value of
a set of values proposed by several processes. A mindicator
may hold at most one value per process. This interface
is designed for use in shared memory runtime systems,
such as garbage collectors, software transactional memory
(TM), and operating system kernels.

We introduce linearizable and relaxed mindicator im-
plementations, both of which are lock-free. Our algorithms
employ a tree structure, where querying the minimum
element takes constant time, and adding and removing
elements from the set does not hinder scalability. In
microbenchmarks and a synthetic TM workload, we show
that both provide good scalability on the x86 and SPARC
platforms.

Keywords-concurrent data structures; synchronization;
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I. INTRODUCTION

Quiescence is a synchronization pattern used by many

shared-memory run-time systems, in which a process

may quiesce at time t by blocking until every operation

that started before time t has finished. (To avoid dead-

lock, a process must not quiesce while it is executing

an operation.) For example, transactional memory (TM)

implementations use quiescence to provide privatization

safety [11], [13], [15], and to prevent starvation [7], [18]

and early memory reclamation [6], [9], Quiescence is

also used in RCU synchronization [14], and sequence-

lock-based critical sections [12].

In this paper, we introduce the Mindicator object,

which can be used to implement quiescence, and we

present two scalable mindicator implementations. A

mindicator maintains a multiset of values, at most one

per process, and supports three operations: ARRIVE,

DEPART and QUERY. A process that does not have a

value in the multiset invokes ARRIVE(v) to add v as

its value; a process removes its value from the multiset

by invoking DEPART. The QUERY operation returns the

minimum value in the multiset. The sequential seman-

tics of a mindicator is specified precisely in Listing 1.

We present a scalable, lock-free and linearizable [8]

mindicator implementation, in which each process

stores its value (if any) in a dedicated leaf of a rooted

tree; internal nodes store the minimum of the values

Listing 1: Mindicator Specification

P = set of all processes

N
∞ = N ∪ {∞}

states

val : P→ N
∞; initially val(p) =∞ for all p ∈ P

procedure ARRIVE(v : N)
requires val(p) =∞
val(p)← v

procedure DEPART()
requires val(p) 6=∞
val(p)←∞

function QUERY() : N∞

return min { val(p) | p ∈ P }

at their children. QUERY is implemented by a single

instruction; ARRIVE and DEPART have O(log(n)) time

complexity, where n is the number of processes. The

implementation achieves good scalability using novel

coordination among processes: in the common case,

few operations access overlapping portions of the tree,

and thus there are no slowdowns or bottlenecks due to

memory conflicts.

We also show how to achieve an even more scalable

implementation by relaxing the linearizability require-

ment, allowing a DEPART operation to return early if

it conflicts with an ARRIVE operation propagating a

smaller value. In this case, the DEPART operation will

take effect after it returns but before the conflicting

ARRIVE returns. Alternatively (and equivalently), we

can consider that ARRIVE and DEPART operations take

effect during their execution intervals, but a QUERY

operation may return a value smaller than the minimum

value currently in the multiset if it overlaps an ARRIVE

operation that overlapped the DEPART operation that

removed the value. This is sufficient for quiescence

because it is safe for a a quiescing process to block

longer than necessary.

We evaluate our mindicator implementations on Intel

x86 and Oracle SPARC architectures using microbench-

marks and within a TM implementation, demonstrating

their scalability. The relaxed mindicator offers partic-



ularly good performance, along with stronger progress

guarantees than the current state of the art, making it

suitable for using within TM runtime systems.

The remainder of this paper is organized as follows:

In section II, we discuss related work and additional

applications of the mindicator. We present the details of

the mindicator algorithms in section III, and prove cor-

rectness and lock-freedom in section IV. In section V,

we provide performance evaluation results on the Intel

x86 and Oracle SPARC architectures.

II. RELATED WORK

The mindicator and its implementations are derived

from the SNZI object [5], on which queries indicate

whether the value of a counter is zero or nonzero but

not the precise value when the counter is nonzero, and

its tree-based implementation.

Jayanti [10] proposed the f-array, an algorithm that

allows wait-free computation of an arbitrary function f
over the values proposed by processes. An f-array uses a

tree structure, and requires that every process propagate

its value from the leaf to the root, making the root a

potential hot spot of contention. SNZI and mindicator

can be viewed as specializations of the f-array object

for specific functions f , which admit cheaper and more

scalable implementations.

A mindicator can be implemented straightforwardly

using existing data structures such as a skip list. How-

ever, lock-free skip list implementations often require

garbage collection [6] or reference counting [19], mak-

ing them less suitable in unmanaged environments.

Also, due to frequent node allocation, skip lists typically

exhibit poor locality, which hurts performance (see

Section V).

Afek, Dauber and Touitou [1] provided an adap-

tive universal construction of shared objects in which

operations propagate up a binary tree using LL/SC,

and are combined to store the state of the object in

the root. This implementation is adaptive: the time

complexity is bounded by the number of processes that

actually access the object. However, processes may still

contend at the root of the binary tree, where operations

are combined, and the update procedure requires the

entire data structure to be copied, incurring significant

overhead.

Aspnes, Attiya and Censor [2] provided a logarithmic

construction of Max-Registers, an object that supports a

read operation that returns the maximum value written

thus far. However, their algorithm assumes that the data

structure is used only a polynomial number of times,

which makes it unsuitable for the long-running problem

domains we consider.

Listing 2: Mindicator Types and Data

type Node = 〈 val : N∞, dirty : B 〉

data (for each process p)
valp : N // p’s value
Op[0 . . . dp] : Node*[ ] // nodes from root to p’s leaf

Listing 3: A Simple Tree-based Algorithm

function QUERY() : N∞

// Read the value of root node.
r ← READ(Op[0])
return r.val

procedure ARRIVE(v : N)
valp ← v
for tp← dp . . . 0 do

L1 x← Op[tp]
if x.val ≤ valp then break

S1 Op[tp].val← valp

procedure DEPART()
for tp← dp . . . 0 do

L2 x← Op[tp]
if x.val < valp then break

min←∞
for each child C of Op[tp] do

if C.val < min then min← C.val

S2 Op[tp].val← min

III. MINDICATOR ALGORITHMS

We implement a mindicator as a rooted tree of node

objects. Each node contains a pair of fields, an integer

val and a boolean dirty, that are accessed together

using load-linked/store-conditional (LL/SC). Each node

is initialized to 〈∞, false〉. In this paper, the structure

of a mindicator tree is static; that is, the number of

tree nodes and the parent/child links do not change. We

could support a dynamically shaped mindicator tree, but

this is not the focus of this paper.

A mindicator supports a finite (but unbounded) num-

ber of processes, equal to the number of leaves of the

tree. Each process is assigned a dedicated leaf, and the

assignment does not change during execution. For each

process p, the integer valp stores the value p inserted

into the mindicator, and Op[0 . . . dp] maintain pointers

to the nodes on the path from root to p’s dedicated leaf

(i.e., Op[0] is the root and Op[dp] is p’s dedicated leaf).

A. A Tree-based Algorithm

We begin with a simple tree-based algorithm shown

in Listing 3. For now, assume the operations do not

overlap, e.g., QUERY, DEPART and ARRIVE are pro-

tected by a single mutex lock. This algorithm does not

require the dirty field. QUERY is a single read on the

root of the mindicator tree, returning the contents of its
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Figure 1: Problematic interleavings among concurrent Arrive and Depart operations

val field. Thus, the root node must keep the minimum

value. To achieve this, ARRIVE and DEPART operations

maintain the property that every internal node stores

the minimum value stored by its children. In ARRIVE,

process p starts from its dedicated leaf, writing its value

valp at nodes in order to lower their val fields. In

DEPART, the process first writes ∞ to its dedicated

leaf. Then the process traverses upwards. For each node

visited, it updates the val field to the minimum val of

its children.

Both ARRIVE and DEPART can often return without

visiting the root. An ARRIVE operation immediately

returns if the process meets a node with val ≤ valp.

In that case, every ancestor of that node has val ≤ valp
and hence, there is no need to lower their val fields.

A DEPART operation returns if it meets a node with

val < valp, since every ancestor of that node also

has val < valp. That is, none of the ancestors has

val = valp. It is easy to verify that at operation

boundaries the value of each node is the minimum of its

children, and the value of the root node is the minimum

of the leaf nodes.

The tree-based algorithm benefits scalability in sev-

eral ways: First, both ARRIVE and DEPART operations

change only a fraction of the tree, which reduces

unnecessary sharing. Second, in the common case these

operations return without touching the root node. Third,

a process that frequently performs QUERY will keep the

root node in its local cache until the minimum value is

changed (i.e., by the ARRIVE of a new minimum or the

DEPART of the old minimum).

B. Unsafe Interleavings

Unsurprisingly, the simple tree-based algorithm fails

if the steps of operations can interleave, even if lines

L1 and L2 use LL instructions, and lines S1 and S2

use SC instructions. Two problems arise with this naı̈ve

approach when a ARRIVE or DEPART returns without

accessing the root node:

Problem 1: Trusting an Unfinished Arrive In Fig-

ure 1a, an ARRIVE operation incorrectly trusts the value

of another unfinished ARRIVE. Reading X.val = 2
causes p’s ARRIVE operation to return immediately on

node X . However, the ARRIVE operation by process



q has not written its value 2 to the root yet. Thus p’s

subsequent QUERY returns ∞, violating the correctness

conditions.

Similarly, in Figure 1b, a DEPART operation trusts the

value of an unfinished ARRIVE. The DEPART operation

by process p is removing its value 7 from the mindi-

cator. This DEPART returns immediately after reading

X.val = 2, which is written by an unfinished ARRIVE

of process q, and thus neglects to remove 7 from the

root node R.

Problem 2: Delayed Update of Depart Trusting the

value of an unfinished DEPART can also lead to incorrect

behavior. In Figure 1c, process q invokes DEPART to

remove its value 2 from the mindicator, but its write to

node X is delayed. Then process p’s ARRIVE(7) reads

X.val = 2 and returns immediately, relying on the fact

that 2 is already in the mindicator. Since q is unaware of

p’s ARRIVE, it will write ∞ at nodes X and R, causing

p’s subsequent QUERY to fail to see the value 2.

In Figure 1d, processes p and q are removing their

values from the mindicator. Process q reads P.val = 7
before p sets it to ∞. Process q then attempts to update

X.val to 7, but is delayed. p returns immediately after

reading X.val = 2, assuming that its value 7 has been

removed. Later on, q’s delayed write will restore the

value 7 at node X , and then at the root node R, making

p’s DEPART operation invalid.

In comparing SNZI and f-array, we see that f-array

solves these problems by requiring every operation to

traverse up to the root (no early termination), whereas

SNZI handles the problem by requiring some operations

to traverse up from a leaf to some node, and then back

down from that node to the originating leaf. We now

present a linearizable, lock-free algorithm based on the

latter technique.

C. The Lock-free Mindicator Algorithm

We present our lock-free mindicator algorithm in

Listings 4 and 5. It avoids Problem 1 above by using

the dirty bit in each node, maintaining the following

invariant: if a node X is not dirty then A.val ≤ X.val
for every ancestor A of X . It avoids Problem 2 above

by requiring that an ARRIVE or DEPART operation

that completes without reaching the root of the tree

(i.e., returns true from PROPAGATE or SUMMARIZE) to

write the highest node reached (lines 3 and 8), causing

a conflict with any DEPART operation concurrently

updating that node.

In more detail, ARRIVE consists of two stages, the

propagate stage and the clean stage. In the propagate

stage, the process traverses from its dedicated leaf

towards the root, invoking PROPAGATE on each node

visited. According to the return value of PROPAGATE,

the propagate stage may stop at some internal node

Listing 4: Lock-free Mindicator: Operations

function QUERY() : N∞

0 r ← READ(Op[0])
return r.val

procedure ARRIVE(v : N)
// Record the inserted value.
valp ← v

// Propagate Stage
tp← dp
done← false

while tp ≥ 0 and ¬done do

done← PROPAGATE(Op[tp])
tp← tp− 1

// Clean Stage
i← tp+ 1
while i ≤ dp do

CLEAN(Op[i])
i← i+ 1

procedure DEPART()
tp← dp
done← false

while tp ≥ 0 and ¬done do

done← SUMMARIZE(Op[tp])
tp← tp− 1

known as the turning point. Then in the clean stage,

CLEAN invokes on each node from the turning point

back down to the dedicated leaf.

In DEPART, the process starts from the dedicated leaf,

invoking SUMMARIZE along the path towards the root.

Like the propagate stage of ARRIVE, DEPART may stop

at some internal node without traversing to the root,

according to the returned boolean of SUMMARIZE.

The real work of the algorithm is encapsulated in

the PROPAGATE, CLEAN and SUMMARIZE operations.

Each takes a node object (X) as its parameter. All

share a similar code pattern: the process first performs

a LL on X , then performs some computation and then

updates X with a SC.

A PROPAGATE by process p ensures X.val ≤ valp.

In the first case, if p reads X.val > valp, p decreases

X.val to valp and sets X.dirty to true. Here, p must

propagate its value to the ancestors. In the second case,

if p reads X.val ≤ valp and X.dirty, then p leaves

X intact, because some process q (possibly p itself, if

there is a concurrent DEPART) must be in the midst

of an ARRIVE, and has propagated valq to X , where

valq ≤ valp. However, p cannot ascertain whether q’s

ARRIVE has reached the ancestors of X , so p must

propagate its value to the parent of X . In the last case,

p reads X.val ≤ valp and ¬X.dirty. In this case, p
can stop its propagation at X by succeeding in a SC

that does not change any field of X: the SC serves to



Listing 5: Lock-free Mindicator: Internals

function PROPAGATE(X : Node*) : B
while true do

1 x← LL(X)

// Case 1: Continue propagation.

if x.val > valp then

2 if SC(X, 〈valp, true〉) then return false

// Case 2: Continue propagation.

else if x.dirty then return false

// Case 3: Stop Propagation.

3 else if SC(X,x) then return true

procedure CLEAN(X : Node*)
4 x← LL(X)

if x.val = valp and x.dirty then

5 SC(X, 〈valp, false〉)

function SUMMARIZE(X : Node*) : B
while true do

6 x← LL(X)

// Traverse to the parent if X.dirty.

if x.dirty then return false

// Find the child the with minimum val.

min←∞
for each child C of X do

7 c← READ(C)
if c.val < min then min← c.val

// If we help another process propagate by decraesing
X.val, we must set X.dirty.

8 if SC(X, 〈min, (min < x.val)〉) then

// If the old value of X is smaller than valp, the
whole DEPART can return.

return x.val < valp

interrupt concurrent SUMMARIZE operations that might

increase X.val.

In CLEAN, if process p reads X.val = valp, then

p attempts to set X.dirty to false, so that any other

process q with valq ≥ valp can stop its propagate stage

or DEPART at X without traversing to the ancestors.

Note that we need not retry the updating SC if it fails.

A SUMMARIZE by process p ensures that p’s value

is removed from node X . If p finds X dirty, it leaves

X intact and proceeds to X’s parent (if any). In that

case, X.val cannot be p’s value. Otherwise, p computes

the minimum over the val fields of X’s children and

attempts to update X.val using SC. This SC may reduce

X.val because by propagating the value of another

process to X , in which case, it sets X.dirty to true;

otherwise, it leaves X clean. If the SC fails, the oper-

ation is retried. If X is clean and its previous value is

smaller than p’s value, then SUMMARIZE returns true,

Listing 6: Relaxed Mindicator: SUMMARIZE

function SUMMARIZE(X : Node*) : B
while true do

x← LL(X)
* if x.dirty then return x.val < valp

min←∞
for each child C of X do

c← READ(C)
if c.val < min then min← c.val

* if min < x.val and min < valp then return true

if SC(X, 〈min, (min < x.val)〉) then

return x.val < valp

allowing DEPART to stop early.

D. Relaxed Mindicators

As discussed in the introduction, we can improve

the scalability of the implementation by relaxing the

linearizability requirement, allowing DEPART to return

early if it conflicts with an ARRIVE operation prop-

agating a smaller value. Our relaxed implementation

guarantees that such a DEPART operation will take effect

before the conflicting ARRIVE returns. Although this

implementation is not linearizable, it suffices for our

intended applications (i.e., quiescence synchronization).

In more detail, we add two conditions in which a

process p executing a SUMMARIZE(X) operation may

return true: if X is dirty and X.val < valp, or if

min < X.val and min < valp. (The new code for

SUMMARIZE appears in Listing 6. Modified lines are

marked with *.) In either case, some process q must be

in the midst of an ARRIVE(v) operation with v < valp,

and that operation will not complete until the value at

every node from X to the root is at most v (and thus

not valp). Thus, although p’s DEPART operation might

return before it has taken effect (i.e., while a QUERY

operation might still return p’s value), it will take effect

before that ARRIVE operation completes.

E. Alternative Mindicator Interface

For some applications, a slightly different object

type, specified in Listing 7, may be simpler and more

convenient. In this variant, every process has exactly

one value in the multiset, and the ARRIVE and DEPART

operations are replaced by a single CHANGE operation.

We can easily adapt the algorithms above to im-

plement this alternative specification by extending the

mindicator tree so that the dedicated leaf of each process

p has two “ghost” children and a bit indicating which

ghost leaf is current. The ghost leaves and the current

bit are entirely local to p: no other process reads or

writes them. To change its value, p flips the current bit,

invokes ARRIVE with its new value, starting from its



Listing 7: Alternative Mindicator Specification

P = set of all processes

states

val : P→ N; initially 0 for all p ∈ P

procedure CHANGE(v : N)
val(p)← v

function QUERY() : N
return min { val(p) | p ∈ P }

newly current leaf and then invokes DEPART starting

from its previous current leaf. Note that one of these

operations will be trivial (i.e., it will modify only local

state), depending on whether the value is increasing or

decreasing, so the cost of an operation is just the cost

of the nontrivial operation.

IV. CORRECTNESS

In this section, we sketch a proof that the algorithm

in Listings 4 and 5 implements a lock-free linearizable

mindicator object. In particular, we state the main

invariants and sketch their proof and how they are used.

A. Invariants

As usual for such proofs, we assume that local

computation is done atomically with the immediately

preceding step (i.e., invocation of QUERY, ARRIVE or

DEPART, or access to a node). Points between these

atomic steps are indicated by numbers in the left margin

of Listing 5. We write p@1, for example, to denote that

process p is about to execute line 1. We denote local

variables of p by subscripting them with p (e.g., xp).

We partition the execution of the algorithm into

phases corresponding to calls to the internal routines.

Specifically, we say that process p is in phase Prop(k),
and write p@Prop(k), if it is executing the body of

a call to PROPAGATE(Op[k]) (i.e., if p@{1, 2, 3}), and

similarly for p@Cln(k) and p@Sum(k). We say that p
is absent if it has never invoked ARRIVE, or it has not

invoked ARRIVE since it last returned from DEPART;

we say p is present if it has returned from ARRIVE and

has not since invoked DEPART.

Much of the subtlety in the algorithm has to do with

processes updating nodes with the SC at line 8. We say

that a process p contends for a node X if it is at line 7

or 8 in a call to SUMMARIZE(X) and no process has

executed a successful SC on X since p’s most recent

LL. For such a process, we use uncheckedp for the set

of children of X that p has not read since its most recent

LL.

We can think of each subtree of the mindicator tree

as a mindicator object of its own, implicitly maintaining

the set of processes that have arrived and not since

departed at that node. When a process arrives or departs,

it updates its dedicated leaf and then propagates this

information up the mindicator tree, using either PROPA-

GATE, if it is arriving, or SUMMARIZE, if it is departing,

helping other processes that it encounters along the way.

The algorithm guarantees that the value at a node is

the minimum of the values associated with processes

that have arrived (and not subsequently departed) at that

node.

To state this invariant, we need to define precisely

when a process “has arrived and not since departed” at

a node. We do this by adding an auxiliary variable X.set

for each node X . Updating this variable is complicated

by two facts: First, a process may “terminate early”

when it finds a clean node whose previous value is less

than the process’s value. In this case, the set associated

with each ancestor must also be updated. Second, a

process may “help” propagate other processes’ informa-

tion up the tree during its summarize phase, specifically,

by a successful SC at line 8. To handle this case, we

introduce another auxiliary variable setp for a process

p@{7, 8} to record to processes in the nodes that p has

read when p read them.

Note that the value of setp is relevant only if p
contends for Xp (i.e., p@{7, 8} and there has been

no successful SC on Xp since p’s most recent LL).

Also, a process q can be in setp for such p only

if p has read the child of Xp associated with q
since its most recent LL. We use contend(q, k) to

denote the set of such processes (i.e., contend(q, k) =
{p : p contends for Oq[k]∧Oq[k + 1] /∈ uncheckedq}).

We now define X.set and setp precisely. These sets

are all empty in the initial state, and they are updated

as follows:

• The last step of p’s Prop(k) phase adds p to

Op[k].set.

• If Prop(k) is p’s final Prop phase (i.e., before it

“turns around” and begins its first Cln phase) then

its last step also adds p to Op[j].set for all j < k
(i.e., all the ancestors of Op[k]) and to setq for all

q ∈ contend(p, j) for j < k (i.e., all the contenders

for ancestors of Op[k] that have already read the

child associated with p).

• If the last step of p’s Sum(k) phase is an LL of

Op[k], finding it dirty (i.e., SUMMARIZE returns

from line 6), then it removes p from Op[k].set.

• If the last step of p’s Sum(k) phase is a successful

SC at line 8, then it changes Op[k].set to setp.

• If Sum(k) is p’s final Sum phase (i.e., the last step

of DEPART) then its last step also removes p from

Op[j].set for all j < k (i.e., all the ancestors of

Op[k]) and from setq for all q ∈ contend(p, j) for

j < k (i.e., all the contenders for ancestors of Op[k]



that have already read the child associated with p).

• An LL at line 6 that makes p a contender initializes

setp to ∅.

• A read by p at line 7 of node X (a child of the node

p is contending for) adds the processes in X.set to

setp.

The invariant above is then:

Invariant 1. X.val = min({valq : q ∈ X.set})
for all X . If p@{7, 8} and then minp =
min({valq : q ∈ setp}).

We prove this invariant using several subsidiary ones.

The first says that p says that p is not in the set of

any node when it is absent; it is in the set of every

ancestor of its dedicated leaf when it is present or in

the clean phase of its ARRIVE operation; and when it

is in the Prop(k) phase of its ARRIVE operation or the

Sum(k) phase of its DEPART operation, its arrival or

departure has propagated monotonically up the tree at

least as far as level k. To prove this invariant inductively,

we need to strengthen it to cover the sets of processes

contending for nodes associated with p. To that end,

we define the following predicates: S(p, k) = (p ∈
Op[k].set∧∀q ∈ contend(p, k), p ∈ setq) and S(p, k) =
(p /∈ Op[k].set∧∀q ∈ contend(p, k), p /∈ setq).

Invariant 2. For any process p:

• If p is absent then S(p, i) for all i.
• If p@Prop(k) for some k then either S(p, i) for all

i or there exists k′ ≤ k such that p /∈ Op[k
′].set

and S(p, j) for all j < k′ and S(p, i) for all i > k′.
• If p@Cln(k) for some k or p is present then S(p, i)

for all i.
• If p@Sum(k) for some k then either S(p, i) for all i

or there exists k′ ≤ k such that p ∈ Op[k
′].set and

S(p, j) for all j < k′ and S(p, i) for all i > k′.

Another important invariant is that when a node is

clean, its value is greater than or equal to the value

of any of its ancestors, and furthermore, any ancestor

with the same value must also be clean. This invariant

allows a process to stop early when it encounters a

clean node whose value is less than the process’s value.

To handle contending processes, we define V (p, k) =
max({Op[k].val}∪{minq : q ∈ contend(p, k)}), and to

prove it inductively, we bound the values as the propa-

gate up the tree.

Invariant 3. For any process p and value v:

• If p@Prop(k) then V (p, i) ≤ valp for all i > k.

• If p@Cln(k) for some k then V (p, i) ≤ valp for all

i.
• If p@Cln(k) for some k or Op[k] = 〈valp, false〉

then V (p, j) ≤ v and Op[j] 6= 〈v, true〉 for all

j < k.

• If p is present then V (p, k) ≤ valp and Op[k] 6=
〈v, true〉 for all k.

B. Lock-freedom

The key to prove lock-freedom is to define a mea-

sure of making progress. We can think of each func-

tion/procedure as an operation. That is, consider a Node

object has PROPAGATE, CLEAN and SUMMARIZE as

its operations. It is easy to see that each of these

operations is lock-free: CLEAN is wait-free (no loops),

and PROPAGATE and SUMMARIZE only go around the

loop if they do an SC on the node that fails, which

can happen only if another operation does a successful

SC. Since any operation that does a successful SC

terminates immediately afterwards, that means that op-

erations on Nodes are lock-free. Since Arrive does at

most d PROPAGATE and d CLEAN, and DEPART does

at most d SUMMARIZE, so the higher-level object is

also lock-free.

We define S, the remaining number of SC operations

that is needed to complete an ARRIVE or DEPART, as

the measure of progress. The maximum number of SC

operations is bounded in each ARRIVE and DEPART

operation. (i.e., S ≤ 2d for ARRIVE and S ≤ d for

DEPART). For every k steps of an ARRIVE or DEPART,

where k is the maximum number of steps before the

operation invokes SC (or decides it won’t have to do

the SC), S is decreased by 1 for at least one ARRIVE

or DEPART operation. Therefore, for n processes, if any

ARRIVE or DEPART operation takes 2ndk steps, some

ARRIVE or DEPART operation must complete in that

interval.

V. EVALUATION

We evaluate mindicators using a microbenchmark

and a synthetic TM workload. Experiments labeled

“Niagara2” were run on a 1.165 GHz, 64-way Sun

UltraSPARC T2 with 32 GB of RAM, running Solaris

10. The Niagara2 has eight cores, each eight-way mul-

tithreaded. On the Niagara2, code was compiled using

gcc 4.3.2 –O3. Experiments labeled “x86” were run on

a 12-way HP z600 with 6GB RAM and a 2.66GHz

Intel Xeon X5650 processor with six cores, each two-

way multithreaded, running Linux kernel 2.6.37. The

x86 code was compiled using gcc 4.7.0 –O3. Results

are the average of 5 trials. Our tests run in a 32-bit

environment. To simulate LL/SC, we append a counter

to each node, and use 64-bit compare-and-swap (CAS)

instructions. The counter uses 31 bits.

We compare the following implementations:

Mindicators: We configured our mindicators to

have 64 leaves. We tested various tree structures: the

tree nodes may have an out-degree of 2, 4 or 8 (corre-

sponding to a depth of 7, 4 and 2 respectively).
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Figure 2: Stress Test Microbenchmark

f-Array: This implementation was achieved by

specializing the f-Array object so that the function f
at each node computes the minimum of its children’s

values.

Skip List: An implementation using a lock-free

skip list [6]. ARRIVE and DEPART are implemented

by insert and remove operations on the skip list, and

QUERY returns the value of the first element of the

bottom level list.

Linked List: As a baseline, we use a sorted doubly-

linked list. The list is protected by a single coarse-

grained lock to minimize latency. Using the list, AR-

RIVE takes linear time. Since the list has back-edges,

we save a pointer to the inserted node, and DEPART

costs O(1). We save a snapshot of the minimum value

separate from the head pointer, so that an O(1) query

can read the snapshot without acquiring the lock.

A. Stress Test Microbenchmark

We stress test the mindicator through a microbench-

mark where all threads repeatedly ARRIVE and DEPART

with randomly generated values. This test emphasizes

the cost of ARRIVE and DEPART, since there are

no QUERY operations. Furthermore, since there is no

program code apart from ARRIVE and DEPART, this

over-emphasizes implementation artifacts of CAS. In

particular, on the x86, the CAS implementation is unfair,

and a single thread will rapidly execute many successive

ARRIVE and DEPART operations. This results in an

inflated throughput curve for the List in Figure 2(b).

On the Niagara2 (Figure 2(a)), the simpler CAS imple-

mentation results in a fundamentally different behavior:

the list hardly scales, and despite higher latency the

mindicator scales to a throughput 13× that of the list.

Both charts also demonstrate the cost of linearizability,

with the relaxed mindicator scaling best.

While the f-array is also implemented as a tree, its

wait-free property impedes scalability relative to the

lock-free mindicator. The f-array hardly scales on x86,

while on Niagara2 it scales worse than our mindicators.

There are two causes: First, write contention on the root

of the f-array causes frequent cache invalidations, which

incur a steep penalty on the deep cache hierarchy of

the x86. Second, in f-array, both ARRIVE and DEPART

must read every child of every node while traversing

from leaf to root, whereas mindicators only read extra

children during DEPART. This difference results in a

larger working set and higher cache miss rate for the

f-array.

The skip list exhibits poor scalability and high over-

head on both platforms. This is due to the maintenance

of the dynamic data structure: repeated allocation/de-

allocation1 of nodes creates much larger memory foot-

prints, and thus, degrades locality. On the other hand,

the size of the skip list tends to be small (i.e. less than

64), and causes frequent cache misses as the linked

structure frequently changes.

In further experiments, the addition of a QUERY

thread had little impact on the Niagara2 result, but

decreased the performance gap between the list and

mindicators on x86, by decreasing the performance of

the baseline list. This was despite the baseline list’s non-

blocking QUERY operation: a single thread repeatedly

issuing QUERY operations creates coherence traffic that

slows down other cores. In contrast, the performance

of mindicators are barely impacted by extra QUERY

threads added to the workload.

B. Varying the Mindicator Structures

The tree structure of a mindicator can be varied to

optimize for the workload and architecture. Mindicator

trees need not be symmetric or balanced, and can be

shaped to match a NUMA architecture. In Figure 3,

we adjusted the out-degree of nodes from 2 to 8,

1Per-thread allocators are used to avoid bottleneck.
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Figure 3: Microbenchmark on Various Tree Structures

making a 64-leaf mindicator more shallow. As depth

decreases, there is less overhead at low thread counts,

primarily due to fewer steps in the ARRIVE and DEPART

operations. However, at higher thread counts, deeper

trees with a fewer children per node scale better, since

the total number of locations accessed by DEPART

decreases.

C. Synthetic TM Workload

While the microbenchmark demonstrates the ability

of the mindicator to scale, it is artificial, since the

mindicator comprises the entire working set of the ex-

periment. To test a more realistic setting, we employed a

mindicator as the quiescence mechanism for the “ALA”

TM algorithm from Menon et al. [15]. We compare it

to the RSTM [16] equivalent of the Menon technique,

“OrecALA”, which which employs a pair of counters

for the same purpose [4], [17]. Variants of the algorithm

appear in Figure 4, with labels derived from whether a

list, a relaxed mindicator, or a linearizable mindicator

is used. To test the STM implementations, we use a

simple red-black tree benchmark. Threads perform an
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Figure 4: STM RBTree Benchmark

equal mix of insert, remove, and lookup operations,

using 8-bit keys. These transactions are small enough

that mindicator overheads matter, but large enough that

the main overhead is the TM, not the mindicator.

Again, we find that the relaxed algorithm provides

excellent scalability, but the gap between relaxed and

linearizability is much less. Furthermore, the list-based

implementations cease to offer satisfactory performance,

with performance degrading on both machines at a

low thread count. On the Niagara2, the mindicator-

based algorithms continue to scale well beyond the

point at which OrecALA peaks. On the x86, perfor-

mance is comparable. Furthermore, there is a direct

relationship between the length of transactions and the

benefit of mindicators. In additional experiments, we

found that for tiny transactions (e.g., Hashtable updates)

mindicators offered less benefit (especially on the x86),

whereas when transaction durations increased, or write

set sizes grew, the benefit of the mindicator increased.

In essence, as transactions grow more complex, the

superior scalability of the mindicator-based algorithms

provides an increasing advantage over OrecALA and



list-based implementations of Menon’s algorithm.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduced the mindicator, a concurrent

data structure that provides a scalable query operation

which returns the minimum of values proposed by

processes. Our mindicator implementations are lock-

free and scalable.

Our future work is in three directions: First, we

seek to develop a better understanding of workloads

for which the relaxed mindicator is sufficient, and

to develop low-overhead mechanisms for rebalancing

mindicators. Second, our experiments reveal that 64-bit

CAS operations are expensive on the x86, and we are

exploring alternatives that might reduce overhead (one

particularly appealing option is to accelerate mindica-

tors with hardware TM [3]). Finally, we are investigat-

ing additional uses of the mindicator within and beyond

TM. In this regard, mindicators can implement a variety

of commutative functions, opening up the possibility of

wide applicability in applications as well as run-time

systems.
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