
Transactionalizing Legacy Code: an Experience
Report Using GCC and Memcached ⇤

Wenjia Ruan, Trilok Vyas, Yujie Liu, and Michael Spear
Lehigh University

{wer210, trv211, yul510, spear}@cse.lehigh.edu

Abstract
The addition of transactional memory (TM) support to ex-
isting languages provides the opportunity to create new soft-
ware from scratch using transactions, and also to simplify
or extend legacy code by replacing existing synchronization
with language-level transactions. In this paper, we describe
our experiences transactionalizing the memcached applica-
tion through the use of the GCC implementation of the Draft
C++ TM Specification. We present experiences and recom-
mendations that we hope will guide the effort to integrate
TM into languages, and that may also contribute to the grow-
ing collective knowledge about how programmers can begin
to exploit TM in existing production-quality software.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming—Parallel Program-
ming

Keywords Transactional Memory; memcached; GCC; C++

1. Introduction
For over a decade, Transactional Memory (TM) [13, 31]
has been promoted as an efficient programming idiom for
simplifying the creation of concurrent software. In recent
years, the C/C++ community has made great strides toward
integrating TM into mainstream products, and today there is
both a draft specification [1] and a set of reference compiler
implementations (GCC, Intel CC, LLVM, and xlC).

The integration of TM into C++ enables its use in two
directions. First, it allows programmers to create new soft-

⇤ This work was supported in part by the National Science Foundation
through grants CNS-1016828 and CCF-1218530.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’14, March 1–5, 2014, Salt Lake City, Utah, USA.
Copyright c� 2014 ACM 978-1-4503-2305-5/14/03. . . $15.00.
http://dx.doi.org/10.1145/2541940.2541960

ware from scratch that is designed around transactional con-
structs. Second, it enables existing software to be retrofitted
with transactions, either to simplify the creation of new fea-
tures, or to improve (from a performance or maintenance
perspective) existing code. In the former category, studies by
Rossbach et al. [28] and Pankratius and Adl-Tabatabai [24]
have shown that TM can simplify the creation of new
software. Similarly, there are several microbenchmark and
benchmark suites that demonstrate the use of TM, most no-
tably STAMP [23], EigenBench [15], Atomic Quake [37],
Lee-TM [2], SynQuake [20], and RMS-TM [16].

While these benchmarks and studies collectively provide
a good platform for evaluating TM implementations, they
treat the STM interface as a constant. Our effort in this pa-
per is complementary: we are interested in evaluating the
proposed C++ TM interface. Our approach is to transaction-
alize a real-world application using the Draft C++ TM Spec-
ification, with an eye towards identifying (a) what common
programming patterns and idioms are not well supported,
(b) what features are cumbersome or difficult to use, and (c)
what performance implications the specification carries.

For the purpose of this study, we used the open-source
GCC compiler to replace locks with transactions in the pop-
ular memcached in-memory web cache. We used the devel-
opmental GCC version 4.9.0, which implements the Draft
C++ TM Specification, for two reasons. First, it is widely
available and easy to modify, which suggested that if we en-
countered bugs, we would be able to remedy them quickly.
Second, its relatively transparent TM library enabled us to
investigate the behavior of different TM algorithms and low-
level design decisions.

Similarly, we chose memcached for two reasons. First,
it is a popular and realistic application, but one that is still
of a tractable size. It was not unreasonable to analyze all
language-level locks within the application, or to conduct
whole-program reasoning about the correctness of code
transformations. Second, it is sufficiently complex to rep-
resent a challenge for TM: locks and condition variables are
intertwined; there is a statically defined order in which locks
must be acquired; there is a reference counting mechanism
that employs in-line assembly and volatile variables (i.e.,

C++11 atomics); and it uses high-performance external
libraries, such as a worklist implemented via libevent [21].
Furthermore, memcached uses some of these primitives in
unconventional ways. For example, while there is a strict
locking order (item, cache, slab, and then stats locks), this
order is sometimes violated by using trylock to acquire
an item lock while holding the cache lock. Similarly, in some
cases a pthread lock is used as a spinlock, by acquiring it us-
ing a trylock inside of a while loop.

In our study, we used memcached version 1.4.15, which
contains recent scalability enhancements. While our work is
similar to a recent effort by Pohlack and Diestelhorst [26], it
differs in that we are using memcached to analyze the Draft
C++ TM Specification, rather than to assess the utility of a
particular hardware TM mechanism.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the key features of the Draft C++ TM Spec-
ification that we evaluate in this paper. Section 3 then chron-
icles the steps we took to transactionalize memcached, and
reports the performance impact of our efforts. In Section 4,
we explore changes to GCC that would affect our results.
Section 5 presents recommendations for designers and im-
plementors of TM libraries, and Section 6 makes recommen-
dations for programmers intending to use the Draft C++ TM
Specification. Section 7 concludes.

2. The Draft C++ TM Specification
The Draft C++ TM Specification [1] integrates transac-
tional memory support into C++ through the addition of
several new keywords and annotations. The extensions can
be roughly broken down into three categories.

Transaction Declarations: Most substantially, the spec-
ification introduces the transaction atomic and
transaction relaxed keywords. These keywords

are used to indicate that the following statement or lex-
ically scoped block of code is intended to execute as a
transaction. There are numerous interpretations of the differ-
ence between these two keywords. For our purposes, atomic
transactions can be thought of as being statically checked
to ensure that they contain no unsafe operations. While the
specification does not guarantee that the meaning of unsafe
will not evolve over time, a reasonable approximation is to
assume that atomic transactions cannot perform I/O, access
volatile variables (i.e., C++ atomics), or call any function
(to include inline assembly) that the compiler cannot prove
will be safely rolled back by the TM library if the calling
transaction aborts.

Relaxed transactions do not carry the same restrictions
as atomic transactions; they are allowed to perform I/O and
other unsafe operations. This is achieved by enabling a re-
laxed transaction to become irrevocable [34, 36], or perhaps
to run in isolation, starting at the point where it attempts an
instruction that the compiler is not certain can be undone.
Such transitions are invisible, though they may present a

scalability bottleneck and can introduce the possibility of
deadlock (e.g., if two relaxed transactions attempt to com-
municate with each other through atomic variables, then
since both must become serial and irrevocable, they cannot
run concurrently). However, in the absence of such unsafe
code, the two types of transactions are indistinguishable;
both should scale equally well.

In addition, the specification supports transaction expres-
sions. Transaction expressions are syntactic sugar to sim-
plify code such as using a transaction to initialize a variable,
or using a transaction to evaluate a conditional.

Function Annotations: The specification supports two
function annotations, transaction safe and trans-

action callable. A safe function is one that contains
no unsafe operations. That is, it can be called from an atomic
transaction. The compiler statically checks that safe func-
tions only call safe functions, and that atomic transactions
only call safe functions. In addition, the compiler must gen-
erate two versions of any safe function: the first is intended
for use outside of transactions; the second contains instru-
mentation on every load and store, so that the function can be
called from within a transaction and safely unwound upon
abort. The compiler generates an error if it encounters a
function that is marked safe but contains unsafe operations.

The callable annotation indicates to the compiler that a
function will be called from a transactional context, but is
not safe. We interpreted this as indicating that it is possible,
but not guaranteed, that the function will call unsafe code.
This, in turn, means the function can only be called from re-
laxed transactions. In contrast to the transaction safe

annotation, transaction callable is strictly a perfor-
mance optimization. An implementation is free to execute all
relaxed transactions serially, or to try to execute them con-
currently as long as no running transaction requires irrevo-
cability in order to perform an unsafe operation. If a relaxed
transaction attempts to call a function that the programmer
has not annotated as callable or safe, then unless the
compiler has inferred the safety of that function, the transac-
tion must become serial and irrevocable.

Based on this interpretation, we concluded that if a func-
tion cannot be marked safe, on account of possibly per-
forming I/O or some other unsafe operation, then it should be
marked callable to ensure that calls to that function from
a relaxed transaction do not cause serialization in those in-
stances where the function does not perform an unsafe oper-
ation. As an example, consider the following code segment:

1 t r a n s a c t i o n r e l a x e d {
2 . . .
3 i f (v e r b o s e)
4 f p r i n t f (s t d e r r , message) ;
5 . . .
6 }

When verbose is false, this transaction need not become
irrevocable. When it is true, the inability of the TM system

to undo writes to stderr necessitates that it become irre-
vocable before calling fprintf. Regardless of the value of
verbose, it must be relaxed: the compiler cannot guarantee
that it will never require irrevocability.

Exception Support: The third category of extensions in
the Draft C++ TM Specification pertain to exceptions. When
a transaction encounters a throw statement, failure atomic-
ity may require the transaction to undo all of its effects; in
other cases it may be desirable for the transaction to commit
its partial state. To express this difference, the specification
provides the transaction cancel statement.

Clearly, an irrevocable relaxed transaction cannot undo
its effects, and indeed it is not correct in the current speci-
fication for any relaxed transaction to cancel itself. Atomic
transactions may explicitly cancel themselves, and may even
do so in the absence of exceptions. This, however, creates a
challenge: with separate compilation, the compiler may not
be able to determine whether a transaction safe func-
tion called by a relaxed transaction will attempt to cancel. To
remedy the problem, an additional may cancel outer

annotation is required on some safe functions.

Extensions For the purposes of our work, it is useful to
consider two extensions to the Draft C++ TM Specification,
both of which are supported in GCC. The first is the trans-
action pure annotation, which allows programmers to
indicate that certain functions are transaction safe without
their memory accesses being instrumented. While this is
intended as a performance optimization, its implementation
is not checked: for example, one could annotate printf as
being transaction pure, and then the compiler would
allow calls to printf from within a transaction.

The second extension allows registration of functions to
run after a transaction commits or aborts. Functions regis-
tered as onCommit handlers run after a transaction com-
mits. Functions registered via onAbort handlers run after
an aborted transaction had undone any memory effects, but
before it retries. Both take a single untyped parameter.

3. Transactionalizing Memcached
The Draft C++ TM Specification appears to offer a sim-
ple route to transactionalizing legacy code: one need only
replace all lock-based critical sections with relaxed trans-
actions. Since the existing lock-based code does not re-
quire compiler support to undo effects, there is no need
for transaction cancel. Consequently, it would
seem that atomic transactions are unnecessary, and trans-
action callable annotations optional.

There are two flaws in this line of thinking. First, many
programs contain condition variables, which require the use
of an associated mutex. Dealing with condition synchroniza-
tion currently requires ad-hoc solutions, and we discuss our
solution for memcached below. Secondly, relaxed transac-
tions are prone to serialization when they encounter an un-

safe operation. Currently, there are no tools for easily iden-
tifying serialization points in relaxed transactions. Thus we
claim that programmers should think of relaxed and atomic
transactions as differing in terms of the performance model
they carry: relaxed transactions have no performance guar-
antees, but atomic transactions guarantee that serialization
will be avoided wherever possible.

Given this performance model, programmers can replace
relaxed transactions with atomic transactions to gain a static
guarantee that those transactions will not cause unnecessary
serialization. To guide this effort, the programmer can use
error messages from incorrect uses of atomic transactions
and transaction safe attributes as a tool for identify-
ing unsafe operations.

We eliminated all contended locks in memcached, with-
out requiring relaxed transactions in the final code. We first
identified the locks that should be replaced, and then mod-
ified any condition synchronization built atop those locks.
Next, we applied the Draft C++ TM Specification to the
fullest extent possible to replace locks with atomic or relaxed
transactions. We then developed transaction-safe alternatives
to unsafe standard libraries. Finally, we applied onCommit
handlers to eliminate all remaining relaxed transactions, re-
sulting in a program in which no transaction required serial-
ization to complete.

3.1 Identifying Locks
Our first step was to identify those locks that indeed were
worthy of removal. There are four categories of locks in
memcached, which are acquired in the following order:
1. item locks: These locks protect individual elements in

the hash table that serves as the central data structure in
the application.

2. cache lock: This lock prevents concurrent modifica-
tions to the structure of the hash table (i.e., resizing).

3. slabs lock: This lock protects the slab allocator.
Slabs are memory blocks that store sets of objects of
the same maximum size.

4. stats lock: This lock protects a set of counters for
program-wide statistics. While much effort has gone into
moving these counters into per-thread structures, some
remain as global variables.

We profiled the contention on locks by using mutrace [25].
This revealed that the cache lock and stats lock

were the only locks that threads frequently failed to acquire
on their first attempt. Thus it was necessary to replace at
least these two locks with transactions. However, several
more locks ultimately required replacing:

There were three instances in which the first operation
of a cache lock-protected critical section was to acquire
the slabs lock. When cache lockwas replaced with a
transaction, the transaction immediately would serialize on
account of the call to pthread mutex lock. Since the
two locks are also released together at the end of the critical
section, in these cases it is correct to change the lock order,

1 void f un c1 a () {
2 t r a n s a c t i o n a t o m i c {
3 i f (t m t r y l o c k (i . l o c k))
4 u s e i t e m (i) ;
5 t m u n l o c k (i . l o c k) ;
6 e l s e
7 s a v e f o r l a t e r (i) ;
8 }
9 }

10

11 void f un c2 a () {
12 t m l o c k (i . l o c k) ;
13 u s e i t e m (i) ;
14 t m u n l o c k (i . l o c k) ;
15 }

(a) func2 privatizes i.

1 void func1b () {
2 t r a n s a c t i o n a t o m i c {
3 / / s a v e f o r l a t e r i s n ’ t needed , s i n c e
4 / / f u n c 2 no l o n g e r a c c e s s e s i v i a
5 / / p r i v a t i z a t i o n . I n s t e a d , t h i s
6 / / t r a n s a c t i o n and l i n e 11 migh t c o n f l i c t
7 u s e i t e m (i) ;
8 }
9 }

10

11 void func2b () {
12 t r a n s a c t i o n a t o m i c {
13 u s e i t e m (i) ;
14 }
15 }

(b) func2 does not privatize i.

Figure 1: Example of privatization that may arise under less aggressive approaches to transactionalization.

i.e., acquire the slabs lock and then begin a transaction
in place of acquiring the cache lock. However, in other
cases the slabs lock was only acquired well after the
cache lock, and the only way to prevent cache lock

transactions from becoming serial and irrevocable was to
also replace the slabs lock with transactions.

Another challenge related to per-thread statistics. Over
the past few years, many of the statistics counters in mem-
cached have been transformed from global counts to per-
thread counters, which are protected by per-thread locks.
Unfortunately, any operation on a mutex lock is unsafe to
perform in an atomic transaction, and thus, we had to replace
these locks with transactions. This highlights a flaw with re-
laxed transactions: when an unsafe operation is performed in
a context where conflicts are exceedingly rare, it still neces-
sitates the serialization of all transactions. One solution to
this problem would be to make lock operations transaction-
safe. Barring such an option, we were forced to replace un-
contended per-thread locks with transactions.

Indeed, “transaction-safe” locks were required when
replacing the lock governing slab re-balancing. In mem-
cached, a “slab rebalance” lock is used by the cache and
slab maintenance threads to prevent concurrent maintenance
of the cache and slab data structures. While holding other
locks, these threads might use trylock calls to determine
whether a concurrent maintenance operation is in-flight. To
remedy this, we replaced the rebalance lock with a boolean
that was modified via transactions. This allowed concurrent
transactions to check the state of the lock. While the lock
was primarily acquired via a spin loop and trylock, in
one case it was acquired via a blocking call. Lacking any
better alternative, we followed any failed blocking acquire
with a call to pthread yield.

Finally, and most unfortunately, we had to replace the
item locks, even though they were never contended. While
the locking order in memcached is item, cache, slabs, and

then stats locks, there are cases in which a maintenance
thread attempts to lock an item while holding other locks that
come later in the locking order. In these cases, either a spin
loop wraps a call to trylock, or else a trylock is used
and failure to acquire results in a handler being registered
so that missed items can be processed at a later time (see
Line 7 of Figure 1a). While all item locks are acquired
using spin loops and trylock, we were still faced with an
uncomfortable decision: as with the rebalance lock, we could
make the lock acquire and release into mini-transactions on a
boolean variable, or we could replace every item lock critical
section with a transaction. The former choice immediately
led to explicit privatization [22, 33]: some data protected
by item locks would be accessed within transactions, and
also outside of transactions (but with the item lock held). We
ultimately chose both routes, and developed two branches of
the code, one with privatization and the other without.

An illustration of the difference is provided in Figure 1.
In branch ’b’, where item lock critical sections are replaced
with transactions, func1 and func2 may run concurrently
and cause conflicts, but i is only accessed from within
transactions. In branch ’a’, where item locks were acquired
and released with transactions, func1a is able to inspect the
lock, and to use i within a transaction as long when the
lock is not held, but i itself might be accessed outside of a
transaction in func2a. Furthermore, the small transaction to
acquire the lock in func2a will implicitly take priority over
the larger transaction that reads the item’s lock in func1a.
Note that while branch ’b’ is more aggressive with respect to
replacing locks with transactions, both branches are correct,
since the default TM algorithm in GCC is privatization safe,
and this level of safety is a requirement of the Draft C++ TM
Specification. Note too that neither option is clearly simpler:
branch ’a’ required fewer net lines of code to change, but
branch ’b’ enabled the removal of several corner cases (e.g.,
the save for later code path).

1 /⇤ i n i t i a l l y mx can run = t r u e ⇤ /
2

3 void worker () {
4 l o c k (L) ;
5 do work () ;
6 i f (mx needed ())
7 i f (! mx running)
8 mx running = t rue ;
9 c o n d s i g n a l (C) ; / / r e p l a c e w i t h s e m p o s t (S) ;

10 d o c l e a n u p () ;
11 u n lo ck (L) ;
12 }
13

14 void h a l t m a i n t a i n e r () {
15 l o c k (L) ;
16 mx can run = f a l s e ;
17 c o n d s i g n a l (C) ; / / r e p l a c e w i t h s e m p o s t (S) ;
18 u n lo ck (L) ;
19 }
20

21 void m a i n t a i n e r () {
22 whi le (mx can run) ;
23 l o c k (L) ;
24 d o m a i n t e n a n c e () ;
25 u n lo ck (L) ;
26 l o c k (L) ;
27 mx running = f a l s e ;
28 c o n d w a i t (L , C) ; / / r e p l a c e w i t h u n l o c k (L) ;
29 u n lo ck (L) ; / / r e p l a c e w i t h s e m w a i t (S) ;
30 }

Figure 2: Comments depict a transformation for removing
condition variables used to wake maintenance threads.

3.2 Refactoring Condition Synchronization
The slabs lock and cache lock are used by mem-
cached both to protect critical sections and as the lock ob-
ject for condition synchronization using pthread cond t

variables. The current Draft C++ TM Specification does not
support condition variables, and thus we were required to
manually transform all condition synchronization.

A simplifying factor is that condition synchronization in
memcached follows two simple patterns. First, there are con-
dition variables for notifying threads when work arrives on
a network connection. These are not associated with con-
tended locks, and we did not consider them. The second pat-
tern is for coordinating data structure maintenance. In this
pattern, many worker threads can attempt to wake a main-
tenance thread, which will then modify a data structure. A
simplified version of this pattern is depicted in Figure 2. This
pattern appears twice, for re-balancing the hash table (via
cache lock) and maintaining slabs (via slabs lock).

One flag exists for thread shutdown, and another for de-
termining if the maintainer is currently active. Every attempt
to wait on a condition is immediately followed by a lock
release, a back edge in the control flow graph, and a lock
re-acquire. Furthermore, the code already ensures that there
are no spurious wake-ups. Consequently, one can replace the
condition variables with semaphores. The changes are triv-

1 l o c k (s t a t s l o c k) ;
2 i n c r e m e n t (c o u n t e r 1) ;
3 un lo ck (s t a t s l o c k) ;
4 i f (u n l i k e l y c o n d i t i o n) {
5 l o c k (s t a t s l o c k) ;
6 i n c r e m e n t (c o u n t e r 2) ;
7 un lo ck (s t a t s l o c k) ;
8 }

Figure 3: Rapid re-locking in memcached.

ial, and appear as comments in Figure 2. Rather than call
cond wait within a lock-based critical section, mainte-
nance threads call sem wait immediately after completing
the critical section. At this stage of the transactionalization,
worker threads called sem post from within a lock-based
critical section. In stage 3, these critical sections became re-
laxed transactions, and in stage 5, these calls were moved to
onCommit handlers within atomic transactions.

This transformation resulted in changes to 10 lines of
code, not counting comments, and had no impact on perfor-
mance. While the transformation suffices for memcached, it
may still be beneficial for TM to explicitly support condi-
tion synchronization (possibilities include conditional criti-
cal regions/retry[3, 12], punctuated transactions [32], com-
municators [19], and transactional condvars [8]). In particu-
lar, when pthread cond wait is not the last instruction
in a critical section, and is in a deeper lexical scope, com-
piler support will be needed to transform the two “halves”
of the critical section into separate transactions.

3.3 Maximally Applying the Specification
Having identified the locks requiring replacement, and hav-
ing developed alternative condition synchronization mech-
anisms for those locks also associated with condition vari-
ables, we were at last able to begin using transactions. We re-
placed all targeted critical sections with relaxed transactions,
maximally applied the callable attribute, and then systemati-
cally replaced unsafe operations with safe operations, so that
transactions could be marked atomic. Recall that in the ab-
sence of transaction cancellation, it would have been correct
to leave transactions relaxed after making their operations
safe, but that the absence of relaxed transactions guarantees
the absence of mandatory serialization.

Replacing Locks, Adding Annotations We began by de-
veloping two branches, corresponding to the two approaches
to item locks discussed above, in which the cache lock,
slabs lock, and stats lock were also transactional-
ized. This resulted in 51 relaxed transactions in each branch.
We then traced all function calls from within relaxed transac-
tions, and marked all functions for which we had the source
as callable. This led to 38 annotations in the privatizing item-
locks (IP) branch, and 49 annotations in the transactional
itemlocks (IT) branch.

1 2 4 8 12
0

20

40

60

80

100

120

140

160

Worker Threads

T
im

e
 (

s
e
c
)

Baseline Semaphore ItemPriv (IP) ItemTx (IT) IP-Callable IT-Callable

Figure 4: Performance of baseline transactional memcached.

Note that on a few occasions, a function would acquire
a lock multiple times within a short region of code (see
Figure 3). This pattern does not match with a mental model
in which lock acquisitions are expensive. Furthermore, when
this entire code region appears within an atomic transaction,
transforming each critical section into a nested transaction
seems unnecessary. This, in turn, implies that under some
circumstances, using TM will encourage programmers to
enlarge critical sections.

Figure 4 presents the performance of memcached with
semaphores in place of condition variables, and then for each
branch with (a) relaxed transactions but no callable annota-
tions, and (b) relaxed transactions and callable annotations.
Experiments were performed on a dual-chip Intel Xeon 5650
system with 12 GB of RAM. The Xeon 5650 presents 6
cores/12 threads, giving our system a total of 12 cores/24
hardware threads. The underlying software stack included
Ubuntu Linux 13.04, kernel version 3.8.0-21, and an experi-
mental GCC version 4.9.0. All code was compiled for 64-bit
execution, and results are the average of 5 trials. Error bars
depict a range of +/- one standard deviation.

We generated a workload for memcached using mem-
slap v1.0, downloaded as part of the Ubuntu libmemcached-
0.31 1 source package. To ensure that network overheads
were not hiding the higher latency of transactions, we ran
the memcached server and memslap on the same machine.
We ran memslap with parameters --concurrency=x

--execute-number=625000 --binary. We varied
the memslap concurrency parameter (x)from 1 to 12 and
matched memcached runs with the same number of worker
threads plus an additional two maintenance threads. Note
that perfect scaling corresponds to an execution time that
remains constant at higher thread counts, since each thread
executes 625K operations.

In Figure 4, we see that the switch from condition vari-
ables to semaphores is negligible, and that privatization (IP)
appears to scale better than using transactions in place of

Trans- In-Flight Start Abort
Branch actions Switch Serial Serial
ItemPriv (IP) 11201538 625K (5.6%) 625K (5.6%) 10
ItemTx (IT) 3462735 625K (18.0%) 1.25M (36.1%) 0
IP-Callable 10511717 625K (5.9%) 625K (5.9%) 10
IT-Callable 3467927 625K (18.0%) 1.25M (36.0%) 0

Table 1: Frequency and cause of serialized transactions for a
4-thread execution.

item lock critical sections (IT). However, there is no evi-
dence to suggest that the callable attribute (IP-Callable / IT-
Callable) improves performance.

Table 1 presents the serialization rates for each branch.
Naturally, there are fewer total transactions when transac-
tions replace item locks, since each item lock acquire and
release is a separate transaction in the IP branch. However,
IP and IT have practically the same number of relaxed trans-
actions that encounter unsafe code on a branch, and must
become serial (In-Flight Switch), and that encounter unsafe
code on every code path, and must begin in serial mode
(Start Serial). A trivial number of transactions abort 100
times in a row, and serialize for the sake of progress.

Handling Volatiles and Reference Counts Many critical
sections in memcached access volatile variables as part of
periodic maintenance operations or condition synchroniza-
tion. Strictly speaking, the semantics of such accesses are not
defined, though in practice one can expect these volatile vari-
able accesses to be an approximation of C++11’s atomic
types. Accesses to volatile and atomic variables are
both considered unsafe, can not be performed in an atomic
transaction, and force transactions to serialize. Therefore,
our only hope of achieving scalability was to replace all
volatile variable accesses with transactional accesses to non-
volatile variables.

This transformation was straightforward. We renamed
volatile variables, traced all compilation bugs, and resolved
all errors by adding transactions that accessed the new non-
volatile variables. In all, we only changed three variables,
and the availability of transaction expressions meant that the
total lines-of-code count did not change.

However, this transformation raises many questions.
First, this transformation was only correct because we man-
ually inspected the code to ensure that concurrent critical
sections never interact via volatile variables. Second, mem-
cached only consists of 7400 lines of code, and it is not
clear that such a change would be realistic to push through
a larger program. Third, GCC currently does not optimize
single-location transactions, and thus this change could have
a significant impact on performance. Finally, the specifica-
tion must guarantee that the semantics of transactions are
no weaker than the semantics of C++ atomic variable ac-
cesses. That is, a transaction expression for reading a vari-
able must have the same ordering guarantees as a read of
an atomic variable, and a transaction that sets a variable’s

1 i f (v o l a t i l e v a r == 1)
2 b l o c k 1 ;
3 e l s e i f (v o l a t i l e v a r == 2)
4 b l o c k 2 ;
5 e l s e
6 b l o c k 3 ;

Figure 5: Re-reading a volatile within a conditional.

value must have at least the same ordering guarantees as a
store to a C++ atomic, where in both cases the access uses
std::memory order seq cst. This is already the case
in the Draft C++ TM Specification.

Surprisingly, we found that in some places within mem-
cached, nested if statements will re-read the same volatile
variable (Figure 5). Based on the assumption that mem-
cached is correct, we did not rewrite these codes.

Memcached uses atomic read-modify-write operations
(e.g., lock incr on the x86) for reference counting. As
with volatile variables, replacing these accesses with trans-
actions was straightforward: we replaced every increment
and decrement with a transaction, and replaced every read
of these variables with a transaction expression. There was
no change to the total lines of code. The main concern with
such a transformation is that these assembly operations have
memory fence semantics, which must then be guaranteed
at transaction boundaries. There is also a question of opti-
mality, since many critical sections increment the reference
count, access a datum, and then decrement the reference
count. With transactions, it might be possible to replace the
modifications of the reference count with a simple read [7].

Performance for this “maximal” transactionalization is
presented in Figure 6 and Table 2. For reference, the baseline
memcached and “Callable” results are reproduced. At all
thread counts, performance degrades, with significant slow-
down at high thread counts. Even worse, serialization in-
creased for both branches. In the IP branch, our transfor-
mation reduced the number of transactions that started in
serial mode, but virtually all of these transactions still ul-
timately serialized. Such an outcome will consistently hurt
performance, since code executes in an instrumented slow
path up until the point where serialization is necessary, at
which point GCC aborts the transaction and restarts it seri-
ally but with less instrumentation. By delaying the point of
serialization, we actually hurt performance.

In the IT-Max branch, the transformation was less prof-
itable, and the slowdown more pronounced. Two contribut-
ing factors are the increased number of transactions (each
of which has higher latency than the code it replaced), and
the dramatic increase in transactions that fall back to serial
mode due to high abort rates. Since GCC’s TM uses direct
update [9, 29], the cost of aborts is expected to be high.

1 2 4 8 12
0

50

100

150

200

250

Worker Threads

T
im

e
 (

s
e
c
)

Baseline IP-Callable IT-Callable IP-Max IT-Max

Figure 6: Performance of maximally transactionalized mem-
cached.

Trans- In-Flight Start Abort
Branch actions Switch Serial Serial
IP-Callable 10511717 625K (5.9%) 625K (5.9%) 10
IT-Callable 3467927 625K (18.0%) 1.25M (36.0%) 0
IP-Max 24085893 1162K (4.8%) 0 87K
IT-Max 6370739 559K (8.8%) 1.25M (19.6%) 66K

Table 2: Frequency and cause of serialized transactions for a
4-thread execution.

3.4 Making Libraries Safe
The most prominent remaining cause of serialization was
calls to unsafe standard library functions. These calls fell
into a few categories. First, there were operations on untyped
memory: memcmp, memcpy, and realloc. Second, there
were basic string functions: strlen, strncmp, strchr,
strncpy, isspace, strtol, strtoull, atoi, and
snprintf. Third, there were calls related to variable ar-
guments: vsnprintf, va start, and va end. Lastly,
there was a single call to htons.

Safety via Reimplementation Most of these functions are
simple to transactionalize: we re-implemented the func-
tion and marked it transaction safe. This addressed calls
to memcmp, memcpy, strlen, strncmp, strncpy, and
strchr. Similarly, we re-implemented realloc in the
naive way, by always allocating a new buffer and using
memcpy.1 Unfortunately, the Draft C++ TM Specification
requires the transactional and nontransactional versions of a
function to be generated from the same source. Thus to make
our functions safe, we could not use custom assembly (e.g.,
vector instructions in memcpy), and thus we had to slow
down the non-transactional code path by replacing calls to
optimized standard library functions with calls to our naive
implementations.

1 We were able to optimize this slightly, since the initial size of the input is
always known in memcached.

1 / / wrap l i b r a r y f u n c t i o n f o o i n s i d e a
2 / / pure f u n c t i o n
3 [[t r a n s a c t i o n p u r e]]
4 i n t p u r e f o o (char ⇤ in , char ⇤ o u t) {
5 re turn foo (in , o u t) ;
6 }
7

8 . . .
9 / / assume t h a t max s i z e s o f i n p u t and o u t p u t

10 / / s t r i n g s are known o t h e r w i s e , use ma l l oc
11 / / s i n c e a l l o c a i s n o t t r a n s a c t i o n �s a f e
12 i n t s i z e = t m s t r l e n (s h a r e d i n s t r i n g) ;
13 char i n [s i z e 1] ;
14 char o u t [s i z e 2] ;
15 / / m a r s h a l l da ta on to s t a c k
16 f o r (i n t i = 0 ; i < s i z e ; ++ i)
17 i n [i] = s h a r e d i n s t r i n g [i] ;
18 / / i n v o k e f u n c t i o n w i t h non�sh ar ed p a r a m e t e r s
19 s i z e = p u r e f o o (in , o u t) ;
20 / / m a r s h a l l da ta o f f o f s t a c k
21 f o r (i n t i = 0 ; i < s i z e ; ++ i)
22 s h a r e d o u t s t r i n g [i] = o u t [i] ;

Figure 7: Example of marshaling shared memory onto the
stack to invoke an unsafe library function foo().

Safety via Marshaling To make the remaining functions
safe, we relied on a novel but unsafe technique. GCC is
aggressive about avoiding instrumentation, in particular
by noticing when reads and writes are performed to the
stack [27] and/or captured memory [6]. By combining this
observation with the transaction pure extension, we
were able to implement a pattern in which data was mar-
shaled from shared memory onto the stack, so that an unsafe
library function could then be invoked using only thread-
local parameters. As needed, the result would then be mar-
shaled back into shared memory. A generic example of this
approach appears in Figure 7.

Using this technique could be dangerous in buffered up-
date STM algorithms [5], unless the programmer can be
sure that the first marshaling operation does not buffer its
writes. Although the GCC TM implementation does not use
buffered update, we still verified that GCC does not instru-
ment the writes to in, or the reads from out.

The isspace, strtol, strtoull, and atoi func-
tions could all be made safe in this manner, by marshaling
the input string onto the stack, calling a wrapped version of
the function, and then using the scalar return value without
any further marshaling. htons did not require any marshal-
ing, since its input and return values are both integers. Simi-
larly, snprintf required all its parameters to be marshaled
onto the stack, and its output parameter to be marshaled back
to shared memory.

Variable Arguments GCC does not yet support variable
arguments within transaction-safe functions. Our solution
was to manually clone and replace every variable-argument
function with a unique version for every combination of pa-

Trans- In-Flight Start Abort
Branch actions Switch Serial Serial
IP-Callable 10511717 625K (5.9%) 625K (5.9%) 10
IT-Callable 3467927 625K (18.0%) 1.25M (36.0%) 0
IP-Max 24085893 1162K (4.8%) 0 87K
IT-Max 6370739 559K (8.8%) 1.25M (19.6%) 66K
IP-Lib 25658618 625K (2.4%) 0 15K
IT-Lib 8211858 0 625K (7.6%) 10K

Table 3: Frequency and cause of serialized transactions for a
4-thread execution.

rameters that appeared in the program. While this approach
is tedious and does not generalize, we believe the effort is
valid for a study such as this: there are no performance or
correctness reasons why variable arguments will not eventu-
ally be transaction safe.

Unfortunately, the techniques discussed in this subsec-
tion are not general. For example, while one might argue
that even after standard libraries become transaction-safe,
marshaling would still be useful for third-party libraries,
there are many dangers. Chief among them are that a third-
party library might at some point begin using transactions
internally, resulting in erroneous behavior (especially with
buffered update STM), and that marshaling requires, in all
cases, that the assembly code be inspected to guarantee that
on-stack buffers are being updated appropriately. Another
concern is that one must predict the sizes of buffers. In mem-
cached, maximum buffer sizes were easy to discern in all
but one location, for which we used a generous 4KB buffer
for the input, and 8KB for the output. Furthermore, when a
transaction employs the marshaling technique multiple times
within a single transaction, the illusion of atomicity may be
violated. For example, snprintf relies on locale informa-
tion when handling floating-point values. In a pathological
case, the locale could be changed by an administrator be-
tween two of these marshaled calls by the same transaction.
The output would clearly not appear to be atomic. Finally,
the absence of side effects in a library is not always cer-
tain. A function’s implementation might change, introducing
static variables or logging that is invisible to the caller.

Figure 8 and Table 3 present the performance when stan-
dard library functions were made transaction safe. We see a
notable improvement in performance, especially at higher
thread counts, though still not as good as the earlier IP-
Callable effort. Analyzing the frequency of serialization, we
see a marked improvement in all areas: fewer transactions
require serialization when they start, fewer become serial-
ized during execution, and fewer abort at a high enough rate
to require serialization to ensure progress.

3.5 Moving Code Out of Transactions
Only 6 unsafe functions remained in transactions: event-
get version, assert, sem post, fprintf,
perror, and abort. We began by handling assert and

1 2 4 8 12
0

50

100

150

200

250

Worker Threads

T
im

e
 (

s
e
c
)

Baseline IP-Callable IT-Callable IP-Max IT-Max IP-Libraries IT-Libraries

Figure 8: Performance with safe library functions.

Trans- In-Flight Start Abort
Branch actions Switch Serial Serial
IP-Callable 10511717 625K (5.9%) 625K (5.9%) 10
IT-Callable 3467927 625K (18.0%) 1.25M (36.0%) 0
IP-Lib 25658618 625K (2.4%) 0 15K
IT-Lib 8211858 0 625K (7.6%) 10K
IP-onCommit 40305505 0 0 48K
IT-onCommit 8130896 0 0 8K

Table 4: Frequency and cause of serialized transactions for a
4-thread execution.

abort, which can immediately terminate a program, with-
out calling any atexit functions. If the underlying TM
is opaque [11], then at the point where the assertion eval-
uates to false or the abort is encountered, there exists an
equivalent lock-based execution in which termination would
be justified. Furthermore, since atexit functions are not
called, other threads should not be able to observe the inter-
mediate state of the transaction calling assert or abort.
Consequently, it is safe to simply terminate the program
at these points. To achieve this effect, we wrapped the as-
sert/abort code and accompanying I/O in a pure function.
Note that the I/O only involved string literals. Note, too, that
while this change allowed many relaxed transactions to be
marked as atomic, there was no impact on the frequency of
serialization, since the relevant code never runs in a correct
execution of memcached.

To handle event get version, we assumed that the
version of libeventwould not change during program ex-
ecution. We then called the function outside of a transaction,
and used the stored value in place of a function call.

Finally, we removed remaining fprintf (which log
certain events to stderr when a program-wide flag is set),
perror, and sem post calls by registering onCommit

handlers. In GCC, these handlers all run after the respective
transaction commits and releases all locks. That being the
case, our use of onCommit handlers has the potential to

1 2 4 8 12
0

20

40

60

80

100

120

140

160

180

200

Worker Threads

T
im

e
 (

s
e
c
)

Baseline IP-Callable IT-Callable IP-Libraries IT-Libraries IP-onCommit IT-onCommit

Figure 9: Performance with onCommit handlers.

produce output in a different order than a lock-based pro-
gram, since I/O performed by the handler does not com-
plete atomically with the associated critical section. Further-
more, in the case of perror, we could not simply delay
the function, but instead saved the errno and then called
strerror r in the commit handler. Unlike I/O, there are
no concerns about ordering when delaying sem post via
an onCommit handler, since the only uses of condition syn-
chronization are to wake up maintenance threads.

The only other challenge when using commit handlers
was that some code could be called from both transactional
and nontransactional contexts. GCC’s TM does not expose
the function for checking if a thread is in a transaction. We
made this function visible to the program, in order to check
for cases when the onCommit handler should be registered,
versus those times when the handler should run immediately.

The performance following these changes took a remark-
able turn. As shown in Figure 9, running times dropped to
almost as low as the previous best, the simple IP-Callable
branch. More importantly, when there is no mandatory seri-
alization, transactionalization of item locks performs better
than the use of privatization. Table 4 verifies that transac-
tions no longer serialize at begin time, or due to an unsafe
call during their execution. With all unsafe operations re-
moved, the impact of serialization due to aborts becomes
the dominant factor distinguishing the two approaches to
item locks. The transactional version, which does not pri-
oritize the small lock acquire/release transactions of the IP
branches, has fewer serializations, leading to lower execu-
tion times.

4. Modifying GCC-TM
In the previous section, we eliminated all relaxed transac-
tions, to include those that performed logging (via fprintf
and perror) and those that ultimately would terminate the
program (via assert and abort). Throughout this paper,
we have claimed that atomic transactions provide a perfor-

1 2 4 8 12
0

20

40

60

80

100

120

140

160

Worker Threads

T
im

e
 (

s
e
c
)

Baseline IP-onCommit IT-onCommit IP-NoLock IT-NoLock

Figure 10: Performance without the readers/writer lock.

mance model to the programmer. To illustrate the signifi-
cance of this model, we made two further changes.

The GCC implementation of TM assumes that serializa-
tion is a common occurrence. To make serialization cheap,
all transactions acquire a single global readers/writer lock
in read mode when beginning a transaction, and release
it on commit or abort. Transactions that require serializa-
tion acquire the lock in write mode. The availability of this
lock makes switching to serial mode cheap, simplifies cor-
ner cases related to thread creation and joining, and enables
a simple contention management policy, wherein a transac-
tion becomes serial after 100 consecutive aborts.

The single readers/writer lock is an obvious bottleneck,
but for programs with even a single relaxed transaction, se-
rialization may be required for correctness. This holds true
even with other contention managers [30]. Once we removed
the last relaxed transaction, we removed the readers/writer
lock from the GCC TM library, and added a separate lock ex-
clusively for thread creation/joining. We then added a variety
of simple contention managers (exponential backoff [14], a
modified form of serialization called “hourglass” [10, 18], or
simply no contention management), as well as a “lazy” STM
algorithm2 and the NOrec STM algorithm [4].

Figure 10 repeats the IT and IP results with onCommit
handlers, and adds two new curves for GCC without the
readers/writer lock. In these curves, there is no contention
management: transactions immediately retry until they suc-
ceed. At high thread counts, we now can see that contention
on the readers/writer lock is the primary source of over-
head. Furthermore, performance is within 30% of the base-
line memcached. This is despite expensive instrumentation
(every read and write of shared data involves a function
call, and every transaction boundary involves the creation
of a checkpoint), and is in comparison to a highly optimized
lock-based baseline.

2 This algorithm uses the same lock table as the default GCC algorithm, but
buffers updates and acquires locks at commit time

448

1 2 4 8 12
0

20

40

60

80

100

120

140

160

Worker Threads

T
im

e
 (

s
e
c
)

Baseline GCC-NoCM NOrec Lazy GCC-Hourglass GCC-Backoff

Figure 11: Comparison to other TM algorithms and con-
tention managers.

In Figure 11, we consider only the best-performing of
these algorithms, IP-NoLock, which we now call “GCC-
NoCM”. We compare it to the Lazy and NOrec STM algo-
rithms, also configured without contention management, as
well as versions of the GCC STM algorithm using backoff
or the hourglass contention manager (configured to prevent
new transactions after 128 consecutive aborts).

With regard to contention managers, we see that the hour-
glass performance best matches performance without any
contention management, making it an interesting candidate
for cases where livelock is not expected, but programmers
desire some guarantee of forward progress. At high thread
counts, backoff performs poorly due to preemption. Further-
more, since the workload is heterogeneous, with dozens of
source-code transactions of varying sizes and access pat-
terns, backoff is not an optimal choice even at lower thread
counts.

Similarly, we found that the GCC algorithm, which does
not have buffered update, had the lowest latency and the best
scalability. This is despite extremely high abort rates: at 12
threads, NOrec worker threads aborted once per 5 commits,
Lazy worker threads aborted 14 times per 1 commit, and
GCC worker threads aborted 12.6 times per 1 commit. In
the case of NOrec, the frequency of small writer transactions
induced a bottleneck on internal NOrec metadata; for both
NOrec and the Lazy algorithm, the need to buffer byte-by-
byte stores in memcpy and then read them later as words
necessitated an expensive logging mechanism. Additionally,
the variance in abort rate among threads was an order of
magnitude lower for GCC than for Lazy, suggesting that
Lazy was more prone to bouts of starvation.

These results suggest that real workloads do exhibit sen-
sitivity to contention management and STM algorithm deci-
sions, that real workloads place stresses on TM algorithms
that research prototypes often ignore, and that expert pro-
grammers should be able to tune these parameters.

5. Recommendations for System Designers
We believe that the most viable path forward is for program-
mers to strive to avoid serialization, and system developers
to both (a) optimize for the serialization-free case, and (b)
facilitate the creation of programs that do not require serial-
ization. To this end, we offer the following recommendations
to designers of transactional runtime libraries, and to the au-
thors of future TM language specifications.

Implementors Should Assume Serialization is Rare The
ultimate success or failure of transactional programming will
depend on performance. Serialization of relaxed transactions
is a dangerous obstacle. The GCC TM library assumes seri-
alized relaxed transactions are common, and optimizes that
case at the expense of workloads in which non-serializing
atomic transactions abound.

To be clear, relaxed transactions are necessary: they are
the only way to perform I/O using transactional data, and
in the absence of I/O, relaxed transactions should perform
on par with atomic transactions. When transactionalizing
legacy C programs, the only justification for atomic trans-
actions is the static guarantee that they will not force se-
rialization. While it ought to be possible to approach the
performance in Figure 10 with a different lock implementa-
tion [17], even a scalable lock will be a bottleneck: if many
transactions must serialize, then the serial fraction of the pro-
gram will be too high to achieve good performance. It is
probably better to increase overhead for the serial transac-
tion to avoid bottlenecks [35, 36]. Note, too, that the latest
version of GCC requires every hardware transaction to use
this lock, suggesting that hardware TM will not achieve its
full potential as long as serialized transactions are the com-
mon case.

The Specification Must Address Condition Synchroniza-
tion The C++ Draft TM Specification does not allow a lock
to be replaced with a transaction if that lock is also used in
conjunction with a condition variable. In this work, we were
able to leverage the specific communication pattern between
threads, and replace condition variables with semaphores.
Our technique does not generalize, and relies on the avail-
ability of onCommit handlers. Given the widespread use
of condition variables in real-world programs, it is essen-
tial that the specification provide a solution. Otherwise, TM
adoption will remain limited.

Specify More Transaction-Safe Libraries Serialized re-
laxed transactions are currently the only mechanism by
which calls to standard library functions are possible. Our
ad-hoc work-arounds, while necessary for evaluating the
specification, do not generalize, and are not safe in the
common case. Programmers should not develop ad-hoc
approaches, marshal parameters into private memory, or
use transaction pure. The programming environment
should also provide support for managing terminating ex-
ceptions (e.g., asserts), so that programmers can continue

to develop robust, self-diagnosing code while using transac-
tions.

Furthermore, transaction safety should not inhibit non-
transactional performance. In the current specification, a sin-
gle function body is used to produce two code “clones” ap-
propriate for transactional and nontransactional uses, and
thus transaction-safe code cannot include inline assembly.
In the long term, application programmers and system de-
velopers alike will benefit from the ability to provide differ-
ent implementations of a function depending on the calling
context.

OnCommit Handlers Should Be Part of the Specification
Our experience greatly benefited from onCommit handlers,
which were removed from the 1.1 Draft Specification. Their
return to the specification will allow programmers to avoid
serialization, and to move non-critical code (i.e., logging)
out of critical sections. We are less convinced that onAbort
handlers are needed: the only role we envisioned for them in
memcached was to employ backoff after a failed transaction.
Specifying a simple contention manager interface is likely
more appropriate.

Ignore Further Ease of Use Concerns Finally, we believe
that the developers of transactional environments should
not worry too much about ease-of-use. In particular, we
found that manual annotation of safe and callable func-
tions, while tedious, was not difficult. Furthermore, it was
not error-prone, since incorrect transaction safe an-
notations immediately generated compiler errors. Similarly,
being forced to re-implement volatile variables, locks, and
condition synchronization was unpleasant, but ultimately re-
warding. We discovered, for example, that replacing item
locks with transactions removed corner cases, and indeed
there are several optimizations to memcached that are now
possible on account of transactional reference counts and the
elimination of delayed maintenance code paths. If locks and
volatiles were transaction-safe, we would not have identified
these opportunities.

6. Recommendations for Programmers
The success of transactional programming will depend on
cooperation between the programmer and system developer,
where both work together to avoid serialization. Our recom-
mendations to application developers appear below:

Performance Model While there are semantic differences
between relaxed and atomic transactions, for legacy code the
key difference relates to the performance model exposed to
the programmer. When a transaction is atomic, the program-
mer can be sure that there is no artificial obstacle to con-
currency, whereas a relaxed transaction might contain some
operation (to include a seemingly benign call to a variable
argument function) that forces serialization. For this reason,
we believe that programmers should rewrite code to avoid
relaxed transactions whenever possible.

Our study entailed only one application, written in C, and
did not use any of the exception-related features of the Draft
C++ TM Specification, which apply only to atomic transac-
tions. While it would be premature to draw any conclusions
about the need for both atomic and relaxed transactions, we
nonetheless feel that both play an important role. In our view,
atomic transactions carry a performance model that is stati-
cally checked, and about which the programmer can reason.
Even when performance does not match the model, the fact
that atomic transactions were used guides the programmer’s
analysis: some potential problems, such as mandatory seri-
alization, simply are not possible.

On the other hand, relaxed transactions provide a safety
guarantee for operations that cannot be atomic, at the ex-
pense of a performance model. The best case performance
for relaxed transactions should match atomic transactions,
but without the compiler’s guidance, we would not have
been able to achieve any confidence that our use of transac-
tions would avoid serialization. Relaxed transactions play a
necessary role in allowing I/O with transactional data, call-
ing libraries that are not yet instrumented for transactions,
and allowing transactions to interact with nontransactional
threads. Programmers must be savvy enough to know when
a relaxed transaction is the right choice.

Incremental Transactionalization is a Myth Our initial
goal was to replace cache lock. However, we had no
choice but to expand our scope to include an array of item
locks, as well as every major lock in the program, whether it
was contended or not. When transactionalizing legacy code,
we expect this experience to be the norm: if the last lock in
a lock hierarchy is the only contended lock, then either the
program lacks concurrency, or there is a trivial technique for
splitting that lock into a set of low-contention locks. It is far
more likely that some intermediate lock in the hierarchy will
be contended, requiring the programmer to replace many
locks with transactions.

While any transactionalization will entail considerable ef-
fort, it resembles a refactor more closely than a redesign.
While we may be overly optimistic, we found that the te-
dious process of annotating functions and replacing locks
and volatile variables provided an opportunity to identify
optimizations in a number of areas (reference counting, in-
teraction with the maintenance threads, statistics reporting),
which we intend to improve as future work.

Expect Limited Tool Support Manually diagnosing the
causes of aborts and serialization in our program was chal-
lenging, and we eventually extended the GCC TM library to
use the Linux execinfo.h infrastructure to provide more
meaningful profiling data. While static information about se-
rialization could be generated at compile time, and dynamic
information about aborts at run time, we did not see the ab-
sence as unreasonable. These tools will arrive eventually,
but system developers’ effort should first be placed on mak-

ing standard libraries safe, and condition synchronization
possible.

Similarly, tools for automatically annotating functions
do not seem particularly valuable. To achieve good perfor-
mance, we had to modify most source files in memcached.
That being the case, the additional task of annotating func-
tions was not overly burdensome. We expect tools to eventu-
ally make this task easier, but in our opinion it is not urgent.

Expect to Fork the Code Ultimately, we believe that the
annotations and transformations we made to memcached are
too complex and widespread to hide behind macros. Cur-
rently, memcached compiles on many operating systems and
platforms, to include those that lack compiler support for
atomic operations (e.g., lock inc), with macros hiding
platform-specific implementation differences. The need for
cross-platform support can be an obstacle to progress: it
is even unlikely that memcached volatiles will be re-
placed with C++ atomic data types any time soon, and if
such a conversion occurs, it will likely be handled via even
more macros. Preserving multi-platform support while per-
forming the modifications discussed in this paper would cre-
ate inscrutable, un-maintainable code.

7. Conclusions
In this paper, we presented our experiences transactionaliz-
ing the memcached in-memory web cache using GCC. Our
focus was analyzing the Draft C++ TM Specification, not on
evaluating a particular TM mechanism or tool. Nonetheless,
our version of memcached is a valuable benchmark, which
we will release as open source code.

Our main findings related to the cost of unintended serial-
ization, the effort required to avoid serialization, and the con-
tract between system developer and programmer that is most
likely to result in a viable transactional programming envi-
ronment. Throughout the paper we identified areas where
the specification could be changed to improve programma-
bility, transformations and analyses that programmers will
need to perform, opportunities for tool creators, and mainte-
nance and performance challenges that will arise during the
piecemeal transactionalization of multi-platform programs.

We hope that this study will assist standardization efforts
by providing further insight into the challenges that will
be faced when transactionalizing legacy code, and that our
source code will provide TM algorithm designers with a new
workload for evaluating implementations.

Acknowledgments
We thank our anonymous reviewers, whose detailed sug-
gestions greatly improved this paper. We also thank Justin
Gottschlich, Victor Luchangco, Jens Maurer, and Torvald
Riegel for many helpful conversations about the Draft C++
TM Specification.

References
[1] A.-R. Adl-Tabatabai, T. Shpeisman, and J. Gottschlich.

Draft Specification of Transactional Language
Constructs for C++, Feb. 2012. Version
1.1, http://justingottschlich.com/

tm-specification-for-c-v-1-1/.
[2] M. Ansari, C. Kotselidis, K. Jarvis, M. Lujan, C. Kirkham,

and I. Watson. Lee-TM: A Non-trivial Benchmark for Trans-
actional Memory. In Proceedings of the International Confer-
ence on Algorithms and Architectures for Parallel Processing,
June 2008.

[3] P. Charles, C. Donawa, K. Ebcioglu, C. Grothoff, A. Kiel-
stra, C. von Praun, V. Saraswat, and V. Sarkar. X10: An
Object-Oriented Approach to Non-Uniform Cluster Comput-
ing. In Proceedings of the 20th ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions, San Diego, CA, Oct. 2005.

[4] L. Dalessandro, M. Spear, and M. L. Scott. NOrec: Streamlin-
ing STM by Abolishing Ownership Records. In Proceedings
of the 15th ACM Symposium on Principles and Practice of
Parallel Programming, Bangalore, India, Jan. 2010.

[5] D. Dice, O. Shalev, and N. Shavit. Transactional Locking
II. In Proceedings of the 20th International Symposium on
Distributed Computing, Stockholm, Sweden, Sept. 2006.

[6] A. Dragojevic, Y. Ni, and A.-R. Adl-Tabatabai. Optimizing
Transactions for Captured Memory. In Proceedings of the
21st ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, Calgary, AB, Canada, Aug. 2009.

[7] A. Dragojevic, M. Herlihy, Y. Lev, and M. Moir. On The
Power of Hardware Transactional Memory to Simplify Mem-
ory Management. In Proceedings of the 30th ACM Symposium
on Principles of Distributed Computing, San Jose, CA, June
2011.

[8] P. Dudnik and M. M. Swift. Condition Variables and Transac-
tional Memory: Problem or Opportunity? In Proceedings of
the 4th ACM SIGPLAN Workshop on Transactional Comput-
ing, Raleigh, NC, Feb. 2009.

[9] P. Felber, C. Fetzer, and T. Riegel. Dynamic Performance
Tuning of Word-Based Software Transactional Memory. In
Proceedings of the 13th ACM Symposium on Principles and
Practice of Parallel Programming, Salt Lake City, UT, Feb.
2008.

[10] F. E. Fich, V. Luchangco, M. Moir, and N. Shavit.
Obstruction-free Algorithms Can Be Practically Wait-free. In
Proceedings of the 19th International Symposium on Dis-
tributed Computing, Cracow, Poland, Sept. 2005.

[11] R. Guerraoui and M. Kapalka. On the Correctness of Trans-
actional Memory. In Proceedings of the 13th ACM Sympo-
sium on Principles and Practice of Parallel Programming,
Salt Lake City, UT, Feb. 2008.

[12] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Com-
posable Memory Transactions. In Proceedings of the 10th
ACM Symposium on Principles and Practice of Parallel Pro-
gramming, Chicago, IL, June 2005.

[13] M. P. Herlihy and J. E. B. Moss. Transactional Memory: Ar-
chitectural Support for Lock-Free Data Structures. In Pro-

ceedings of the 20th International Symposium on Computer
Architecture, San Diego, CA, May 1993.

[14] M. P. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer
III. Software Transactional Memory for Dynamic-sized Data
Structures. In Proceedings of the 22nd ACM Symposium on
Principles of Distributed Computing, Boston, MA, July 2003.

[15] S. Hong, T. Oguntebi, J. Casper, N. Bronson, C. Kozyrakis,
and K. Olukotun. Eigenbench: A Simple Exploration Tool for
Orthogonal TM Characteristics. In Proceedings of the IEEE
International Symposium on Workload Characterization, At-
lanta, GA, Dec. 2010.

[16] G. Kestor, S. Stipic, O. Unsal, A. Cristal, and M. Valero.
RMS-TM: A Transactional Memory Benchmark for Recog-
nition, Mining and Synthesis Applications. In Proceedings of
the 4th ACM SIGPLAN Workshop on Transactional Comput-
ing, Raleigh, NC, Feb. 2009.

[17] Y. Lev, V. Luchangco, and M. Olszewsk. Scalable Reader-
Writer Locks. In Proceedings of the 21st ACM Symposium
on Parallelism in Algorithms and Architectures, Calgary, AB,
Canada, Aug. 2009.

[18] Y. Liu and M. Spear. Toxic Transactions. In Proceedings of
the 6th ACM SIGPLAN Workshop on Transactional Comput-
ing, San Jose, CA, June 2011.

[19] V. Luchangco and V. Marathe. Transaction Communicators:
Enabling Cooperation Among Concurrent Transactions. In
Proceedings of the 16th ACM Symposium on Principles and
Practice of Parallel Programming, San Antonio, TX, Feb.
2011.

[20] D. Lupei, B. Simion, D. Pinto, M. Misler, M. Burcea,
W. Krick, and C. Amza. Transactional Memory Support
for Scalable and Transparent Parallelization of Multiplayer
Games. In Proceedings of the EuroSys2010 Conference, Paris,
France, Apr. 2010.

[21] N. Mathewson and N. Provos. Libevent – An Event Notifica-
tion Library, 2011–2013. http://libevent.org/.

[22] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai,
R. Hudson, B. Saha, and A. Welc. Practical Weak-Atomicity
Semantics for Java STM. In Proceedings of the 20th ACM
Symposium on Parallelism in Algorithms and Architectures,
Munich, Germany, June 2008.

[23] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
STAMP: Stanford Transactional Applications for Multi-
processing. In Proceedings of the IEEE International Sympo-
sium on Workload Characterization, Seattle, WA, Sept. 2008.

[24] V. Pankratius and A.-R. Adl-Tabatabai. A Study of Transac-
tional Memory vs. Locks in Practice. In Proceedings of the
23rd ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, San Jose, CA, June 2011.

[25] L. Poettering. Measuring Lock Contention, 2009–2013.
http://0pointer.de/blog/projects/mutrace.html.

[26] M. Pohlack and S. Diestelhorst. From Lightweight Hardware
Transactional Memory to Lightweight Lock Elision. In Pro-
ceedings of the 6th ACM SIGPLAN Workshop on Transac-
tional Computing, San Jose, CA, June 2011.

[27] T. Riegel, C. Fetzer, and P. Felber. Automatic Data Partition-
ing in Software Transactional Memories. In Proceedings of

the 20th ACM Symposium on Parallelism in Algorithms and
Architectures, Munich, Germany, June 2008.

[28] C. Rossbach, O. Hofmann, and E. Witchel. Is Transactional
Programming Really Easier? In Proceedings of the 15th ACM
Symposium on Principles and Practice of Parallel Program-
ming, Bangalore, India, Jan. 2010.

[29] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. McRT-STM: A High Performance Software
Transactional Memory System For A Multi-Core Runtime. In
Proceedings of the 11th ACM Symposium on Principles and
Practice of Parallel Programming, New York, NY, Mar. 2006.

[30] W. N. Scherer III and M. L. Scott. Advanced Contention
Management for Dynamic Software Transactional Memory.
In Proceedings of the 24th ACM Symposium on Principles of
Distributed Computing, Las Vegas, NV, July 2005.

[31] N. Shavit and D. Touitou. Software Transactional Memory.
In Proceedings of the 14th ACM Symposium on Principles of
Distributed Computing, Ottawa, ON, Canada, Aug. 1995.

[32] Y. Smaragdakis, A. Kay, R. Behrends, and M. Young. Trans-
actions with Isolation and Cooperation. In Proceedings of
the 22nd ACM Conference on Object Oriented Programming,
Systems, Languages, and Applications, Montreal, Quebec,
Canada, Oct. 2007.

[33] M. Spear, V. Marathe, L. Dalessandro, and M. Scott. Pri-
vatization Techniques for Software Transactional Memory
(POSTER). In Proceedings of the 26th ACM Symposium
on Principles of Distributed Computing, Portland, OR, Aug.
2007.

[34] M. Spear, M. M. Michael, and M. L. Scott. Inevitability Mech-
anisms for Software Transactional Memory. In Proceedings of
the 3rd ACM SIGPLAN Workshop on Transactional Comput-
ing, Salt Lake City, UT, Feb. 2008.

[35] M. Spear, M. Silverman, L. Dalessandro, M. M. Michael, and
M. L. Scott. Implementing and Exploiting Inevitability in
Software Transactional Memory. In Proceedings of the 37th
International Conference on Parallel Processing, Portland,
OR, Sept. 2008.

[36] A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable
Transactions and their Applications. In Proceedings of the
20th ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, Munich, Germany, June 2008.

[37] F. Zyulkyarov, V. Gajinov, O. Unsal, A. Cristal, E. Ayguade,
T. Harris, and M. Valero. Atomic Quake: Using Transactional
Memory in an Interactive Multiplayer Game Server. In Pro-
ceedings of the 14th ACM Symposium on Principles and Prac-
tice of Parallel Programming, Raleigh, NC, Feb. 2009.

